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Abstract 

Concatenation is a method of building long codes out of shorter ones; it attempts to  
meet the problem of decoding complexity by breaking the required computation into 
manageable segments. We present theoretical and computational results bearing on the 
efficiency and complexity of concatenated codes; the major theoretical results a r e  the 
following : 

1. Concatenation of an arbitrari ly large number of codes can yield a probability of 
e r r o r  that decreases exponentially with the over-all block length, while the decoding 
comtdexity increases only algebraically ; and 

2. Concatenation of a finite number of codes yields an e r r o r  exponent that 1s inie- 
r io r  to  that attainable with a single stage, but is nonzero at all ra tes  below capacity. 

Computations support these theoretical results,  and also give insight into the rela- 
tionship between modulation and coding. 

This approach illuminates the special power and usefulness of the class of Reed- 
Solomon codes. We give an original presentation of their structure and properties, 
from which we derive the properties of all BCH codes; we determine their weight dis- 
tribution] and consider in detail the implementation of their decoding algorithm, which 
we have extended to correct both erasures  and e r ro r s  and have otherwise improved. 
W e  show that on a particularly suitable channel, RS codes can achieve the performance 
specified by the coding theorem. 

Finally, we present a generalization of the use of erasures  in minimum-distance 
decoding] and discuss the appropriate decoding techniques, which constitute an inter- 
esting hybrid between decoding and detection. ! 
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I. INTRODUCTION 

It is almost twenty years  since Shannon1 announced the coding theorem. The prom- 
ise  of that theorem was great: a probability of e r r o r  exponentially small  in the block 
length at any information rate below channel capacity. 
even moderately long codes, however, proved much more difficult than was imagined at 
first. 
powerful enough to improve communication system performance significantly yet simple 
enough to be attractive to build. 

The work described here is an approach t o  the problem of coding and decoding com- 
plexity. 
t imes longer than the coding theorem proves to be sufficient, i f ,  by so doing, we arr ive 
at a code that we can implement. The idea is basically that used in designing any large 
system: break the system down into subsystems of a s ize  that can be handled, which 
can be joined together to  perform the functions of the large system. A system s o  
designed may be suboptimal in comparison with a single system designed all of a piece, 
but as long as the nonoptimalities a r e  not crippling, the segmented approach may be the 
preferred engineering s olut i on. 

Finding a way of implementing 

Only recently, in fact, have there been invented codes and decoding methods 

2-4 

It is based on the premise that we may not mind using codes from 10 t o  100 

1.1 CODING THEOREM FOR DISCRETE MEMORYLESS CHANNELS 

The coding theorem is an existence theorem. It applies t o  many types of channels, 
but generally it is similar to the coding theorem for block codes on discrete memoryless 
channels, which will now be stated in its most modern form. 

transition probability matrix p.. = Pr(y./xi). 
inputs x. is selected by the transmitter. The conditional probability that the receiver 
then observes the output y .  is pji; the memorylessness of the channel implies that these 
probabilities a r e  the same for  each transmission, regardless of what happened on any 
other transmission. A code word of length N for  such a channel then consists of a 
sequence of N symbols, each of which comes from an I-symbol alphabet and denotes one 
of the I channel inputs; upon the transmls&ull d suck z -::cr?, 9 rp-ived word of length 
N becomes available to  the receiver, where now the received symbols a r e  from a 
J-symbol alphabet and correspond to  the channel outputs. 
rate R (nats) consists of eNR code words of length N. Clearly eNR S IN; sometimes we 

shall use the dimensionless rate r, 0 S r C 1, defined by I rN = eNR or R = r in I. 
The problem of the receiver is generally t o  decide which of the eNR code words w a s  

sent, given the received word; a wrong choice we call an er ror .  We shall assume that 
all code words a re  equally likely; then the optimal strategy for  the receiver in principle, 
though rarely feasible, is to compute the probability of getting the received word, 
given each code word, and to  choose that code word for which this probability is great- 
est: this strategy is called maximum-likelihood decoding. 

5 

A discrete memoryless channel has I inputs xi, J outputs y .  and a characteristic 
On each use of the channel, one of the 

J '  

J1 J 
1 

J 

A block code of length N and 

The coding theorem then 
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asser ts  that there exists a block code of length N and rate R such that with maximum- 
likelihood decoding the probability of decoding e r r o r  is bounded by 

-NE( R) Pr(e)  S e D 

where E ( R ) ,  the e r r o r  exponent, is characteristic of the channel, and is positive fo r  all 
rates less  than C ,  called capacity. 

1.1:  
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Fig. 1. E ( R )  curve for BSC with p = .Ol. 

Figure 1 shows the e r r o r  exponent f o r  the binary symmetric channel whose c ross -  
over probability is . 0 1 - that is, the discrete memoryless channel with transition prob- 
ability matrix p1 = pZ2 = . 9 9 ,  p12 = pZ1 = . o 1. As is typical, this curve has three 

5 
segments: two convex curves joined by a straight-line segment of slope -1. Gallager 
has shown that the high-rate curved segment and the straight-line part  of the e r r o r  
exponent a r e  given by 
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E(R) = max {E~cF, PI-PR} 
o < p s  1 

P 
2 

where 
r 

T 

A 

Eo(P, p )  -In 

A 
P being any I-dimensional vector of probabilities Pi; this is called the unexpurgated 
e r r o r  exponent, in deference to the fact that a certain purge of poor code words is 
involved in the argument which yields the low-rate curved segment, o r  expurgated e r r o r  

exponent. An analogous formula exists for  the exponent when the inputs and outputs form 
continuous rather  than discrete sets.  It should be mentioned that a lower bound to P r (e )  
is known which shows that in the range of the high-rate curved segment, this exponent 

is the t rue  one, in the sense that there  is no code which can attain P r (e )  G e 
E*(R) > E(R) and N arbitrari ly large. 

- 

* 
-NE (R) for 

Thus fo r  any rate less  than capacity, the probability of e r r o r  can be made to  
decrease exponentially with the block length. 
that it does not specify a particular code that achieves this performance, nor does it 
offer an attractive decoding method. 
atively easily implemented classes of linear codes contain 

members satisfying the coding theorem. It has  largely been the decoding problem that 
has stymied the application of codes to  real systems, and it is this problem which con- 
catenation attempts to  meet. 

The deficiencies of the coding theorem a r e  

.The former deficiency is not grave, since the rel-  
7 and convolutional codes 

1 .2  CONCATENATION APPROACH 

The idea behind concatenated codes is simple. Suppose we set  up a coder and 

decoder f o r  some channel; then the coder-channel-decoder chain can be considered from 
the outside as a superchannel with exp NR inputs (the code words), exp NR outputs (the 
decoder's guesses),  and a transition probability matrix characterized by a high proba- 
bility of getting the output correspondlng t o  tne cor1 ~ : L L  illrut. 
memoryless,  the superchannel must be also, if the code is not changed from block to  
block. 
dimensionless rate r, and with symbols from an eNR-symbol alphabet. This done, 
we can abandon the fiction of the superchannel, and observe that we have created a code 
fo r  the original channel of length nN, with (eNR)Nr code words, and therefore rate r R  
(nats). 
coders and decoders a r e  labelled inner and outer, respectively. 

by two decoders suited to much shorter codes. 
complexity, but at some sacrifice in performance. 

If t ts  z,-lgi?d nh-n-1 iq 

It is now reasonable to think of designing a code for  the superchannel of length n, 

These ideas a r e  illustrated in Fig. 2, where the two codes and their  associated 

By concatenating codes, we can achieve very long codes, capable of being decoded 
We thus realize considerable savings in 

In Section V we shall find that this 
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Fig. 2. Illustrating concatenation. 

sacrifice comes in the magnitude of the attainable e r r o r  exponent; however, we find that 
the attainable probability of e r r o r  still decreases exponentially with block length f o r  all  
rates less  than capacity. 

The outer code wi l l  always be one of a class of nonbinary BCH codes called Reed- 
8 Solomon codes, f i r s t  because these a r e  the only general nonbinary codes known, and 

second, because they can be implemented relatively easily, both for coding and fo r  
decoding. But furthermore, we discover in Section V that under certain convenient 
suppositions about the superchannel, these codes a re  capable of matching the per-  
formance of the coding theorem. Because of their  remarkable suitability for  our 
application, w e  devote considerable time in Section I11 to  development of their  s t ruc-  
ture  and properties, and in Section IV to  the detailed exposition of their  decoding 
algorithm. 

1 . 3  MODULATION 

The functions of any data terminal a r e  commonly performed by a concatenation of 
devices; for  example, a transmitting station might consist of an analog-to-digital con- 
ver ter ,  a coder, a modulator, and an antenna. 
only with the coding stage, which typically accepts a s t ream of bits and delivers to  the 
modulator a coded s t ream of symbols. Up to this point, only the efficient design of this 
stage has been considered, and in the sequel this concentration wi l l  largely continue, 
since this problem is most susceptible t o  analytical treatment. 

equipment are beyond our design control. It may happen that the channel already exists 
in such a form, say, with a certain kind of repeater,  that it must be fed binary symbols, 
and in this case the raw channel is discrete. Sometimes, however, we have more f ree-  
dom to choose the types of signals, the amount of bandwidth, or the amount of diversity 
to  be used, and we must properly consider these questions together with coding to  arr ive 
at the most effective and economical signal design. 

When we are thus f r ee  to select some parameters of the channel, the channel con- 
templated by algebraic coding theory, which, f o r  one thing, has a fixed number of inputs 

and outputs, is no longer a useful model. A more  general approach to  communication 

Coding theory is normally concerned 

By a r a w  channel, we mean whatever of the physical channel and associated terminal 
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theory, usually described under the headings modulation theory, signal design, and 
detection theory, is then appropriate. Few general theoretical results are obtainable 
in these disciplines, which must largely be content with analyzing the performance of 
various interesting systems. 
for  coding schemes meeting certain standards of performance, where both discrete r a w  
channels and channels permitting some choice of modulation a re  considered. This gives 
considerable insight into the relationship between modulation and coding. In particular 
it is shown that nonbinary modulation with relatively simple codes can be strikingly 
superior either to  complicated modulation with no coding, o r  t o  binary modulation with 
complicated binary codes. 

Section VI reports the results of a computational search 

1.4 CHANNELS WITH MEMORY 

Another reason for  the infrequent use of codes in real  communication systems has 
been that real  channels a r e  usually not memoryless. 
periods in which it is good, causing only scattered random e r ro r s ,  separated by short 
bad periods o r  bursts of noise. Statistical fluctuations having such an appearance will 
be observed even on a memoryless channel; the requirement of long codes imposed by 
the coding theorem may be interpreted a s  insuring that the channel be used for enough 
transmissions that the probability of a statistical fluctuation bad enough to  cause an 
e r r o r  is very small  indeed. 
ory, but now the block lengths must generally be very much longer, so  that the channel 
has time to  run through all its tricks in a block length. 

t o  adapt the coding scheme at the transmitter to  the type of noise currently being 
observed at the receiver, o r  t o  request retransmission of blocks which the receiver 
cannot d e ~ o d e . ~  Without such a feedback channel, if the loss  of information during 
bursts is unacceptable, some variant of a technique called interlacing is usually envi- 
sioned. l o  In interlacing, the coder codes n blocks of length N at once, and then t rans-  
mits the n first symbols, the n second symbols, and so forth through the n N 
symbols. I+ i 
clear that a burst of length b G n can affect no more than one symbol in any block, so 
that if the memory time of the channel is of the order of n o r  less  the received block 
of nN symbols will generally be decodable. 

Concatenation obviously shares the burst-resistant properties of interlacing when 
the memory time of the channel is of the order of the inner code block length o r  less ,  
f o r  a burst  then wi l l  usually affect no more than one or  two symbols in the outer code, 
which wil l  generally be quite correctable. 
quate models of real  channels with memory, it is difficult to pursue analysis of the 
burst  resistance of concatenated codes, but it may be anticipated that this feature will  
prove useful in real  applications. 

Typically, a channel will  have long 

The coding theorem can be extended to  channels with mem- 

If a return channel from the receiver to  the transmitter is available, it may be used 

th 

At the receiver the blocks a r e  unscrambieci did  &~dd k!5-.55:~11;- 

Because of the difficulty of constructing ade- 
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1.5 CONCATENATING CONVOLUTIONAL CODES 

We shall consider only block codes henceforth. The principles of concatenation a r e  
clearly applicable to any type of code. Fo r  example, a simple convolutional code with 
threshold decoding is capable of correcting scattered random e r ro r s ,  but when channel 
e r ro r s  a r e  too tightly bunched the decoder is thrown off stride for  awhile, and until it 
becomes resynchronized causes a great many decoding errors .  
a channel appears to be an ideal bursty channel, in which e r r o r s  do not occur at all 

except in the well-defined bursts. 
and could be used as outer codes. 
applications. 

From the outside, such 

Very efficient codes a r e  known for  such channels, 
The reader will  no doubt be able t o  conceive of other 

1. 6 OUTLINE 

This report consists of 6 largely self-sufficient sections, with two appendices. 
anticipate that many readers will  find that the material is arranged roughly in inverse 
order of interest. 
nections between them. 

We 

Therefore, we shall outline the substance of each section and the con- 

Section I1 begins with an elaborate presentation of the concepts of minimum-distance 
decoding, which has  two purposes: to  acquaint the reader with the substance and utility 
of these concepts, and to  lay the groundword for  a generalization of the use of erasures  
in minimum-distance decoding. Though this generalization is an interesting hybrid 

between the techniques of detection and of decoding, it is not used subsequently. 

ground to  an understanding of BCH codes and their  properties. 
the important nonbinary Reed-Solomon codes. 
new results concern the weight distribution of RS codes and the, implementation of much 
shortened RS codes. 

Section I11 is an attempt to provide a fast ,  direct route for  the reader of little back- 
Emphasis is placed on 

Though the presentation is novel, the only 

Section IV reports an extension of the Gorenstein-Zierler error-correcting algorithm 
for  ECH codes s o  that both erasures  and e r r o r s  can be simultaneously corrected. 
the final step in the GZ algorithm is substantially simplified. A close analysis of the 
complexity of implementing this algorithm with a computer concludes this section, and 
only the results of this analysis a r e  used in the las t  two sections. Appendix A contains 
variants on this decoding algorithm of more restricted interest. 

Section V contains our major theoretical results on the efficiency and complexity of 
concatenated codes, and Section VI reports the results of a computational program eval- 
uating the performance of concatenated codes under a variety of specifications. The 
reader interested chiefly in the theoretical and practical properties of these codes will  
turn his attention first  to Sections V and VI, Appendix B develops the formulas used in 
the computational program of Section VI. 

Also, 
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11. MINIMUM-DISTANCE DECODING 

We introduce here  the concepts of distance and minimum-distance codes, and discuss 
how these concepts simplify decoding. W e  describe the use of erasures ,  and of a new 
generalization of erasures.  Using the Chernoff bound, we discover the parameters of 
these schemes which maximize the probability of correct decoding; using the Gilbert 
bound, we compute the exponent of this probability for each of three minimum-distance 
decoding schemes over a few simple channels. 

2 . 1  ERRORS-ONLY DECODING 

In Section I we described how an inner code of length N and rate  R could be concat- 
enated with an outer code of length n and dimensionless rate r to  yield a code of over- 
all length nN and rate r R  f o r  some raw channel. 
of this code is selected at random and transmitted -how do we decode what is received? 

The optimum decoding rule remains what it always is when inputs a r e  equally likely: 

Suppose now one of the e nNrR words 

the maximum-likelihood decoding rule. In this case, given a received sequence ? of 
length nN, the rule would be to  compute Pr($l?) for each of the e nNrR code words f. 

-A 

The whole point of concatenation, however, is to  break the decoding process into 
manageable segments, at the price of suboptimality. 
sible by the concatenated structure af the code is that the inner decoder can decode 
(make a hard decision on) each received N-symbol sequence independently. In doing so, 
it is in effect discarding all information about the received N-symbol block except which 
of the eNR inner code words was most likely, given that block. This preliminary proc- 
essing enormously simplifies the task of the outer decoder, which is to make a final 
choice of one of the e nNrR total code words. 

The basic simplification made pos- 

Let q = eNR. When the inner decoder makes a hard decision, the outer coder and 
decoder s e e  effectively a q-input, q-output superchannel. We assume that the raw chan- 
nel and thus the superchannel are memoryless. By a symbol e r r o r  we shall mean the 
event in which any output but the one corresponding to the input actually transmitted is 
received. Normally, the probability of symbol e r r o r  is low; it is then convenient to  
assume that all incorrect transmissions a re  equally probable -that is, to  assume that 
the transition probability matrix of the superchahnel is 

i # j  

1 - p ,  i = j  
Pj i 

where p is the probability of decoding error in the inner decoder, hence of symbol e r r o r  
in the superchannel. We call a channel with such a transition probability matrix an ideal 

superchannel with q inputs and probability of e r r o r  p. 

sequence f f o r  which the probability of receiving r, given f ,  is greatest. When 
Recall that the maximum-likelihood rule, given $, is to  choose the input 

A A A 



the channel is memoryless, 

But since log x is a monotonic function of x, this is equivalent t o  maximizing 

Now f o r  an ideal superchannel, substituting Eqs. 1 in Eq. 2, we want t o  maximize 

where 

i i  

a’(r.,f.) 9 
1 1  

Define the Hamming weight a(ri,fi) by 

Since 

r f i  

ri # fi. 

i 
a(r.,f.) L: 

1 1  

maximizing Eq. 3 is equivalent t o  maximizing 

Under the assumption p/(q-1) (1-p), this is equivalent to minimizing 

n 

dH(;,?) ), a(ri,fi). 
i= 1 

*a 
%(r,f) is called the Hamming distance” between and is simply the number of 

places in which they differ. 
decoding rule is therefore to choose that code word which is closest to the received word 
in Hamming distance. 

and 
For  an ideal superchannel, the maximum-likelihood 

a 



t . 

I 
Although this distance has been defined between a received word and a code word, 

there is no difficulty in extending the definition to  apply between any two code words. We 
then define the minimum distance of a code as the minimum Hamming distance between 
any two words in the code. 

A code with large minimum distance is desirable on two counts. First, as we shall 
now show, it insures that all combinations of less  than o r  equal to a certain number t 
of symbol e r ro r s  in n uses of the channel will be correctable. 
and t symbol e r ro r s  occur, so that ri # f i  in t places. 

A 

For ,  suppose f is sent 
Then from Eq. 5 

&a 
d H ( r , f )  = t. 

Take some other code word 2. We separate the places into three disjoint se t s ,  such that 

so i f f .  = g  

Sc i f f i #  gi and ri = f i  

i i  

if f i  # gi and ri # fi. e 

We note that the se t  Se can have no more than t elements. Now the distance between r 

and 2, 

can be lower-bounded by use of the relations 

a(r i ,  gi) 2 a(gi, $1 = 0, i E So 

a(r i ,gi)  >-a(g . , f . )  - 1 = 0, i E Se 
1 1  

Here, besides Eqs. 7, we have used a 2 0 and the fact that for  i E Sc, ri # gi. 
tuting (9) in (8) yields 

Substi- 

A 2  

dH(g,z) 3 dH(g,f) - ISe I 2 d - t. (10) 

Here, we have defined ISe I as the number of elements in Se and used the fact that 

%(g,f)  2 d if and 
bining ( 6 )  and (10) we have proved that 

A2. 
a r e  different words in a code with minimum distance d. By com- 

22 A A  

dH(r , f )  < dH(r ,g)  if 2t  d. (11) 
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In other words, if to is the largest  integer such that 2to < d, it is impossible f o r  any 
combination of to o r  fewer symbol e r r o r s  to  cause the received word to be closer to  any 
other code word than to the sent word. 

Another virtue of a large minimum distance follows from reinterpreting the argu- 
ment above. 
the received word, this hypothesis implies the occurrence of a particular sequence of 
errors .  If this sequence is such that the Hamming distance criterion of Eq. 11 is sat- 
isfied, then we say that the received word is within the minimum distance of that code 
word. (This may seem an unnecessarily elaborate way of expressing this concept, but, 
as in this whole development, we a r e  taking great pains now s o  that the generalizations 
of the next two sections will  follow easily.) Furthermore, the preceding argument shows 
that there can be no more than one code word within the minimum distance of the 
received word. Therefore, if by some means the decoder generates a code word that 
it discovers to be within the minimum distance of the received word, it can without fur- 
ther ado announce that word as its maximum-likelihood choice, since it knows that it is 
impossible that there be any other code word as close o r  closer to the received word. 
This property is the basis for a number 12- 

recently, and W i l l  be used in the generalized minimum-distance decoding of section 2. 3. 

A final simplification that is frequently made is to se t  the outer decoder to  decode 
only when there is a code word within the minimum distance of the received word. Such 
a scheme we call errors-only decoding. There will  of course in general be received 
words beyond the minimum distance from all code words, and on such words an e r ro r s -  
only decoder will  fail. 
e r ro r ,  although it is detectable while an e r r o r  is not. 

Therefore no decoding e r r o r  will occur. 

Suppose we hypothesize the transmission of a particular code word; given 

of clever decoding schemes proposed 

Normally, a decoding failure is not distinguished from a decoding 

2 .2  DELETIONS-AND-ERRORS DECODING 

The simplifications of the previous section were bought, we recall,  at the price of 
denying to the outer decoder all information about what the inner decoder received except 
which of the inner code words was  most probable, given that reception. 
following section we investigate techniques of relaying somewhat more information to  the 
outer decoder, hopefully without greatly complicating its task. 
generalizations of errors-only decoding, and will  be developed in the framework that has 
been introduced. 

W e  continue to require the inner decoder to make a hard decision about which code 

In this and the 

These techniques a r e  

word was sent. 
reliable it considers its guess to  be. 
indicates either that its guess is fully reliable o r  completely unreliable; the latter event 
is called a deletion o r  erasure. 
evidence of the received word did not clearly indicate which code word was sent; also, 
a decoding failure, which can occur in errors-only decoding, would be treated as a dele- 
tion, with some arbitrary word chosen as the guess. 

We now permit it to send along with its guess some indication of how 
In the simplest such strategy, the inner decoder 

The inner decoder normally would delete whenever the 
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In order to make use of this reliability information in minimum distance decoding, 

we define the Elias weight by -- 
reliable and r. = f i i  

1, ri reliable and ri f f i  

where P is an arbitrary number between zero and one. 
between a received word ? and a code word 

Then the Elias distance 16 
is defined as 

dE(F,?) ), b(ri,fi). 
i= 1 

Note that Elias distance is not defined between two code words. 
We shall le t  our decoding rule be to  choose that code word which is closest in Elias 

distance to the received word. 
minimum (Hamming) distance d is transmitted, and in the n transmissions (i) s dele- 
tions occur, and (ii) t of the symbols classed as reliable a r e  actually incorrect. Then 

(J 4 1 

A 

Let us then suppose that some word f from a code of 

L A  

dE(r , f )  = t t Ps. 

Take some other code word 2. We separate the places into disjoint sets  such that 

gi 

Sc if f i  # gi, r. = f ri reliable 
1 i’ 

i c  
if f i  # gi, 

if f i  # gi, 

ri deleted 

ri # fi,  ri reliable 

Note that 

and 

ISd[  s.  

Now the distance between $ and 2 can be lower-bounded by the relations 

b(ri,  gi) 3 a(gi, fi)  = 0 ,  

b(r i ,gi)  = a(g . , f . )  = 1, 

b(ri,gi) = a(g . , f . )  - 1 t P = B, 

b(ri ,gi)  >-a(g. , f . )  - 1 = 0, 

i E So 

i E S, 

i E sd 

i E Se 

1 1  

1 1  

1 1  

11 



where we have used Eqs. 12 and 15. Now 

I 12 

2 d - (1-P)s - t, (18) 

where we have used Eqs. 13, 16, 17 and the fact that the minimum Hamming distance 
between two code words is d. From Eqs. 14 and 18, we have proved that 

A2. 

dE(F,c) > dE(r , f )  if t t ’s < d - (1-p)s - t or 2t t s < d. (19) 

(The vanishing of f3 shows why we took it to be arbitrary.) Thus with a decoding rule 
based on Elias distance, we a r e  assured of decoding correctly if 2t  t s < d, in perfect 
analogy to  errors-only decoding. When we decode only out to the minimum distance - 
that is, when the distance criterion of (19) is apparently satisfied -we call this dele- 
tions-and-errors decoding. 
~ 

That erasures could be used with minimum distance codes in this way has long been 
recognized, but few actual decoding schemes have been proposed. 
cerns in Section I11 will be to develop a deletions-and-errors decoding algorithm for  the 
important class of BCH codes. There we find that such an algorithm is very little more 
complicated than that appropriate to errors-only decoding. 

One of our chief con- 

2. 3 GENERALIZED MINIMUM-DISTANCE DECODING 

A further s t e p  in the same direction, not previously investigated, is to permit the 
inner decoder to  classify its choice in one of a group of J reliability classes C 
rather than just two as previously. 

1 S j C J, 
j’ 

We define the generalized weight by 

Pcj, ri in class C. and ri = f i  
J 

r. in class C. and ri # f i  
’ej 9 J 

c ( r . , f . )  
1 1  

where 0 C P . C P C 1. It wi l l  develop that only the difference 
CJ e j  

a .  pej - pcj 
J 

of these weights is important; a wil l  be called the reliability weight or simply weight 
corresponding to  class C 
we consider quite reliable, and a small  weight to  a class considered unreliable; indeed, 

j 
We have 0 6 a 6 1; a la rge  weight corresponds to  a class 

j *  j 



if Q .  < Q 

to an erasure,  and of Q = 1 to the fully reliable symbols of the preceding section. 
we shall say class C. is l e s s  reliable than Ck. The case Q .  = 0 corresponds 

I 

I J k  J J 
j 

Let us now define a generalized distance 

d G (?,?,I f c(ri,fi). 
i= 1 

-5 

Again we suppose the transmission of some word f from a code of minimum distance d, 
and the reception of a word in which n 
class C and n a r e  received incorrectly in C Then 

symbols a r e  received correctly and placed in 
c j  

j 9  e j  j' 

J 

j = l  

Take some other code word 2, and define the sets  So, Scj, and S by ej 

gi if f i  = 

Scj 
if f i  # gi, r = fi ,  ri in class C 

i j 

j Sej 
if f i  # gi, ri # f i ,  ri in class C 

Note that 

lSej I nej* 

Using Eqs. 20 and 23, we have 

c(ri,  gi) 2 a(gi,f i)  = 0, i E So 

where the second relation depends on ri = f i  # g,, i E Scj. Now 

i= 1 

13 



j =  1 

j =  1 

Thus, using Eqs. 22 and 26, we have proved that 

[(I-p . t p  .)n . t ( l -p  . t p  .)n .] < d, 
e3 c3 c3 C3 eJ eJ 

j=  1 

J 
o r  1 [ ( l -a j )ncj t ( l ta . )n  . ]  < d. 

3 e3 
j =  1 

Therefore if  generalized distance is used a s  the decoding criterion, no decoding e r r o r  
will  be made whenever n When 
in addition we decode only out to  the minimum distance - that is, whenever this inequal- 
ity is apparently satisfied - we say we a r e  doing generalized minimum-distance decoding. 

This generalization is not interesting unless we can exhibit a reasonable decoding 

and n a r e  such that the inequality of (27)  is satisfied. 
cj ej 

scheme that makes use of this distance criterion. 
that a decoder which can perform deletions-and-errors decoding can be adapted to per- 
form generalized minimum-distance decoding. 

We imagine that for  the purpose of allowing a deletions-and-errors decoder to work 
on a received word, w e  make a temporaly assignment of the weight a! = 1 to  the se t  of 
reliability classes C.  for which j E R, say,  and of the weight a’ = 0 to the remaining 
reliability classes C 
classes C 
let  the deletions-and-errors decoder attempt t o  decode the resulting word, which it will 
be able to do if (see Eq. 27) 

The theorem that appears below shows 

J 
3 j 

j ’  
j E E,  say. This means that provisionally all receptions in the 

We then j E E, a r e  considered to be erased, and all others to  be reliable. 
j ’  

If it succeeds, it announces some code word which is within the minimum distance 
according to the Elias distance criterion of (28). 

s ee  whether it also satisfies the generalized distance criterion of (27), now with the 
original weights a.. 
tance of the received word, and can therefore be announced as the choice of the outer 
decoder. 

We then take this announced word and 

If it does, then i t  is the unique code word within the minimum dis- 
J 

We a r e  not guaranteed of succeeding with this method f o r  any particular provisional 
assignment of the a!. The following theorem and its corollary show, however, that a 

3 
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small  number of such trials must succeed if the received word is within the minimum 
distance according to the criterion of Eq. 27. 

Define the J-dimensional vector 
Let the classes be ordered according to  decreasing reliability, s o  that a .  2 ak if 

~ J 
j < k. 

A 
l 

a P (a1,a2, .  . . ,aJ). 

Let the sets  Ra consist of all j S a ,  and Ea of all j 2 a t 1, 0 S a S J. Let?; be the 
J-dimensional vector with ones in the f i r s t  a places and zeros thereafter, which repre- 
sents the provisional assignment of weights corresponding to R = Ra and E = Ea. 
idea of the following theorem is that 
are the 
must take on its minimum value over the convex hull at some extreme point - that is, at 
one of the provisional assignments 2 

The 
is inside the convex hull whose extreme points 

, while the expression on the left in Eq. 27 is a l inear function of %, which a 

a' 

THEOREM: If .] < d and a 3 ak for  j < k, there is some 
j 

j=  1 

integer a such that 2 (n . t n  .) < d. 
CJ eJ 

j=  1 j = a t l  

Proof: Let 

Here, f is clearly a l inear function of the J-dimensional vector '72: Note that 

j =  1 j = a t l  
A 

We prove the theorem by supposing that f(a;) 2 d, for  all a such that 0 S a G J ,  and 
exhibiting a contradiction. &'or, ier 

1 A = l - a  
0 

A = a  - a  l S a S J - 1  a a a t l '  

A = a  J -  J' 

We see  that 

O S A  6 1 ,  O S a G J ,  and Aa = 1 a 
a=O 

15 



I 

s o  that the A can be treated as probabilities. But now a 

Therefore 

A A 

Thus if f(a;) 

fore f(a;) must be less  than d for  at least  one value of a. 
The import of the theorem is that if there is some code word which satisfies the 

generalized distance criterion of Eq. 27, then there must be some provisional assignment 
in which the least  reliable classes a r e  erased and the rest  a r e  not which will  enable a 
deletions-and-errors decoder to succeed in finding that code word. But a deletions-and- 
e r ro r s  decoder will succeed only if there a r e  apparently no e r ro r s  and d - 1 erasures ,  
or one e r ro r  and d - 3 erasures ,  and s o  forth up to to e r r o r s  and d - 2to - 1 erasures ,  
where t is the largest  integer such that 2to S d - 1. If by a trial we then mean an oper- 
ation in which the d - 1 - 2i  least  reliable symbols a r e  erased, the resulting provisional 
word decoded by a deletions-and-errors decoder, and the resulting code word (if the 

decoder finds one) checked by Eq. 27, then we have the following corollary. 

within the minimum distance by the generalized distance criterion of ( 2 7 ) ,  regardless 
of how many reliability classes there are. 

of the trials -perhaps all - may suT:ceed, s o  that the average number of trials may be 
appreciably l e s s  than the maximum. 

d,  all a ,  then f ( a )  2 d, in contradiction to  the given conditions. There- 
Q. E. D. 

2 

0 

COROLLARY: to + 1 S (dt1)/2 tr ials suffice to decode any received word that is 

The maximum number of tr ials is then proportional only to d. Furthermore,  many 

2 .4  PERFORMANCE OF MINIMUM-DISTANCE DECODING SCHEMES 

Our primary objective now is to develop exponentially tight bounds on the probability 
of e r r o r  achievable with the three types of minimum-distance decoding discussed above, 
and with these bounds to compare the performance of the three schemes. 

In the course of optimizing these bounds, however, we shall discover how best to 
assign the weights a to the different reliability classes. Since the complexity of the 
decoder is unaffected by the number of classes which we recognize, we shall let  each 
distinguishable N-symbol sequence of outputs y.  fo rm a separate reliability class,  and 
le t  our analysis tell us how to group them. 
code words a re  equally likely, the task of the inner decoder is to  assign to the received 

j 

J 
Under the assumption, a s  usual, that all 

an x. and an a where x. is the code word x f o r  which Pr(y.  Ix) is greatest ,  and a 
yj  J j ’  J J j 
is the reliability weight that we shall determine. 
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r . 

a. The Chernoff Bound 

We shall require a bound on the probability that a sum of independent, identically 

The bounding technique that we use is that of Chernoff”; the derivation which follows 
distributed random variables exceeds a certain quantity. 

is due to Gallager.18 This bound is known19 to be exponentially tight, in the sense that 

no bound of the form Pr (e )  C e-nE , where E is greater than the Chernoff bound expo- 

nent, can hold for arbitrarily large n. 

* * 

Let yi, 1 G i C n, be n independent, identically distributed random variables, each 

with moment-generating function 

and semi-invariant moment-generating function 

p(s) = In g(s). 

Define yma, to be the largest  value that y can assume, and 

Let Y be the sum of the yi, and le t  Pr(Y2n6) be the probability that Y exceeds n6, where 

Ymax 2 6 2 %  Then 

where 

1, Y = C y  21-16 i i 

0 otherwise. 
f t y l , Y Z ’  - ,YJ  = 

Then 

- 
Pr(Yan6)  = - f s e SY .-nsb = e  -ns6 fl eSYi 

i= 1 
- 

= e  -ns6 eSYi 

17 



where we have used the fact  that the average of a product of independent random vari- 
ables is the product of their averages. 
and le t  

To get the tightest bound, we maximize over s ,  

E(&) E max [s6-p(s)]. 
sa0 

Setting the derivative of the bracketed quantity to zero, we obtain 

g ' b )  
6 = p'(s)  =- 

g(s)  

and that p'(s)  is a monotonically I 
max' It can easily be shown that ~ ' ( 0 )  = Y, p'(m) = y 

increasing function of s. 
which 6 = pl(s), and substitution of this s in (s6-p(s)) gives E(6). 

Therefore if ymax 2 6 37, there is a non-negative s for 

As an example, which wi l l  be useful la ter ,  consider the variable y which takes on 

, 

the value one with probability p and zero with probability 1 - p. Then I 
S g ( s ) = p  e t 1 - p  

P es 

p es t 1 - p 
6 = p ' ( s )  = 

W1-P) 1 - P  
1 - 6  E(6)  = 6 In p( l  7 6) - ln -  

= - 6 In p - (1-6) In (1-p) - 3C (a), 

where 

X ( 6 ) -  - 6111 6 - (1-6)ln (1-6). 

Then if  1 3 6 2 p, 

This can be interpreted a s  a bound on the probability of getting more than n6 occur- 
rences of a certain event in n independent t r ia ls ,  where the probability of that event in 
a single t r ia l  is p. 

From this result we can derive one more fact which we shall need. Let p = 1/2, then 

i=n6 

It follows that 
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b. Optimization of Weights 

We now show that the probability of decoding e r r o r  o r  failure for minimum-distance 
decoding is the probability that a certain sum of independent identically distributed ran- 
dom variables exceeds a certain quantity, and therefore that we can use the Chernoff 
bound. 

Let a code word from a code of length n and minimum distance d be transmitted. 
We know already that a minimum-distance decoder will fail t o  decode o r  decode incor- 
rectly if and only if 

for ,  in the case of errors-only decoding, all a = 1; of deletions-and-errors decoding, 
a = 0 or  1; and of generalized minimum-distance decoding, 0 S Q S 1. 

j 
j j 

Under the assumption that the channel is memoryless and that there is no correla- 
tion between inputs, the probabilities p of an 
incorrect reception in class C. a r e  constant and independent from symbol to  symbol. 
Consider the random variable that for  each symbol assumes the value (1-a ) if the sym- 
bo1 is received correctly and is given weight Q and (1 t a . )  if the symbol is received 
incorrectly and given weight Q 

dom variables with the common moment-generating function 

of a correct reception in class C. and p 
cj J ej 

J 
j 

j' J 
These a r e  then independent, identically distributed ran- 

j '  

Furthermore,  the condition of Eq. 29 is just the condition that the sum of these n ran- 
dom variables be greater  than or  equal to d. 
bound that the probability P r ( e )  of e r r o r  or  failure is upperbounded by 

Letting 6 = d/n, we have by the Chernoff 

-nE' (6) P r ( e )  G e , 

where 

p(s) being the natural logarithm of the g ( s )  of (30). 

assignment of the Q .  to the reliability classes; however, we a r e  f ree  to vary the a. to 
maximize this bound. Let 

This bound is valid for  any particular 

J J 

E(6) = max E'(6) = max [ S ~ - V ( S ) ] .  
U s, Q j  
j 

It is convenient and illuminating to  maximize first over the distribution 



where 

pm(s) min p(s) = min In g(s )  = In min g(s) In gm(s). 
a a a 
j j j 

(34) 

p ( s )  is minimized by minimizing g(s) ,  and we shall now do this for  the three types of 
minimum-distance decoding. 

For  errors-only decoding, there is no choice in the a all of which must equal one; 
j '  

the ref ore ,  

The total probability of symbol e r r o r  is p = Z pej. 

6' = 6/2, we see  that this bound degenerates into the Chernoff bound of section 2.4a on 
getting more than d/2 symbol e r ro r s  in a sequence of n transmissions, as might be 
expected. 

For  deletions-and-errors decoding, we can assign some outputs to a se t  E of erased 

symbols and the remainder to a se t  R of reliable symbols; we want to choose these sets  
so as to minimize g(s). In symbols, a = 0,  all j E E, and a = 1, all j E R, so 

Making the substitutions s' = 2s and 
j 

j j 

Assigning a particular output y.  to E o r  R makes no difference if 
J 

e2' p . t p . = e S (p . t p  .)  
eJ CJ eJ CJ 

o r  

Here, we have defined L 
significance of L. below. 
j E R if L. < e 

optimum criterion of whether to e rase  o r  not. 

the error-likelihood ratio, as p ./pcj; we shall discuss the 
j '  eJ 

We see  that to minimize g(s) ,  we l e t  j E E if L. > e-' and 
-,J J 

-that is, comparison of L. to  a threshold that is a function of s is the 
J J 

Then 

where 
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-S j c R i f L S e  
P,(S) = c Pej: j 

j € R  

Finally, f o r  generalized minimum-distance decoding, we have 

s ( l+a . )  

, 

s (1-a.) 
+ Pej e J 

j 

which we can minimize with respect to  a single a .  by setting the derivative 
J 

s(1-a.) s ( l + a . )  
J t spej e J ag(s 1 

aai - -'Pcj e 
-- 

J 

to  zero, as long as 0 G a G 1. The resulting condition is 
j 

o r  

Whemver L, is such that -(lnL,)/Zs > 1, we let a = 1, while whenever -(lnL.)/Zs < 0, 
j J J 

-2s j € R  i f L G e  , 
j € E  i f L 2 1 ,  

j E G otherwise 

t C pcj 
j c R  

+ es 

s a  
and we have used e j = d x  when j E G. 

CJ eJ 
Let us examine for a moment the error-like 

r, 1 

(37) 

ihood ratio L Denote by Pr(xi,y.)  1 ne 

probability of transmitting xi and receiving y * the ratio L..  between the probability that 
xi was not transmitted, given the reception of y , and the probability that xi - was trans- 
mitted (the alternative hypothesis) is 

j' J 
3' 1J 

j 
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The optimum decision rule for the inner decoder is to choose that xi for  which P r ( X i  IY - 1  
is maximum, or  equivalently f o r  which L.. is minimum. 

J 
But now for  this xi' 

1J 

pcj = Pr(xi,y.)  and p = I: Pr(xil,Y.)- 
3 ej i l f i  3 

Thus 

ij' L. = min L 
J i  

We have seen that the optimum reliability weights a r e  proportional to  the L * thus the 
error-likelihood ratio is theoretically central to the inner decoder's decision making, 
both to  its choice of a particular output and to  its adding of reliability information to that 
choice. 
ciate that the simplification of minimum-distance decoding consists in its requiring of 
these statistics only the largest ,  and the corresponding value of i.) 

equally likely, given y is q - 1. When q = 2, therefore, L. cannot exceed one. It fol- 
lows that for generalized minimum-distance decoding with binary inputs the se t  E of 
Eq. 37 is empty. 

6 2p1(0) ,  or in this case 6 2p&(O). 

become identical, namely 

j '  

(The statistician will  recognize the L.. as  sufficient statist ics,  and will appre- 
13 

The minimum value that L. can assume is zero; the maximum, when all q inputs a r e  
J 

j '  J 

In the discussion of the Chernoff bound we asserted that it was valid only when 
When s = 0, the sets  R and E of (36) and (37) 

j E R 1  if L 2 1  

j c E  i f L C 1 .  

Therefore pL(0) is identical for  deletions-and-errors and generalized minimum-distance 
decoding. If there is no output with L. < 1 (as will always be t rue when there a r e  only 
two inputs), then p&(O) for these two schemes will  equal that for errors-only decoding, 
too: otherwise it will be less. 
ability of e r ro r  to decrease exponentially with n for  a smaller  minimum distance n6, 
hence a larger  rate,  than without deletions. 

J 

In the latter case,  the use of deletions permits the prob- 

We now maximize over s. From Eqs. 35-37, pm (s) has the general form 
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. 

which has a solution when 2 3 6 2 

(s6-pm(s)), we obtain E(6), and thus a bound of the form 
(0). Substituting the value of s thus obtained in m 

(39) 
-nE( 6) P r ( e )  C e 

We would prefer a bound that guaranteed the existence of a code of dimensionless 
rate r and length n with probability of decoding failure of e r r o r  bounded by 

-nE(r) Pr(e) S e 

The Gilbert bound" asser t s  for large n the existence of a code with a q-symbol alpha- 
bet, minimum distance 6n, and dimensionless ra te  r, where 

Substitution of r for  6 in (39) and using this relation with the equality sign gives us  the 
bound we want. 

2.37 1 

2.05 

GENERALIZED MINIMUM-DISTANCE EXPONENT 

DELETIONS4ND4RRORS EXPONENT 

/ERRORS-ONLY EXPONENT 

I 
0.2 0.4 0.6 0.8 0.97 

DIMENSIONLESS RATE, I 

Fig. 3. Minimum-distance decoding exponents for  a Gaussian 
channel with L = 3. 
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c. Computational Comparisons 

To get some feeling fo r  the relative performance of these three progressively more 
involved minimum-distance decoding schemes, the e r r o r  exponents for  each of them 
were computed over a few simple channels, with the use of the bounds discussed above. 

In order to  be able to compute easily the error-likelihood ratio, we considered only 
channels with two inputs. Figure 3 displays a typical result; these curves a r e  f o r  a 
channel with additive Gaussian noise of unit variance and a signal of amplitude either +3 

or -3,  which is a high signal-to-noise ratio. At lower signal-to-noise ratios the curves 
a r e  closer. We also considered a two-dimensional Rayleigh fading channel for  various 
signal-to-noise ratios. 

For  these channels, at  least ,  we observed that though improvement is, of course, 
obtained in going from one decoding scheme to the next more complicated, this improve- 
ment is quite slight at  high rates,  and even at low rates ,  where improvement is greatest ,  
the exponent fo r  generalized minimum-distance decoding is never greater  than twice that 
for errors-only decoding. 
decoding is comparable to, and slightly greater  than, the step between the la t ter  and 
generalized minimum- dis tance de coding. 

From these computations and some of the computations that will be reported in Sec- 
tion VI, it would seem that the use of deletions offers substantial improvements in per- 
formance only when very poor outputs (with error-likelihood ratios greater  than one) 
exist, and otherwise that only moderate returns a r e  to be expected. 

The step between e r ro r s  -only and deletions-and-errors 
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I 111. BOSE-CHAUDHURI-HOCQUENGHEM CODES 

Our purpose now is to make the important class of BCH codes accessible to the 
reader with little previous background, and to do s o  with emphasis on the nonbinary BCH 
codes, particularly the RS codes , whose powerful properties a r e  insufficiently known. 

The presentation is quite single-minded in its omission of all but the essentials 
needed to understand BCH codes. The reader who is interested in a more rounded expo- 
sition is referred to the comprehensive and still timely book by Peterson. In particular, 
our treatment of finite fields will be unsatisfactory to the reader who desires some depth 
of understanding about the properties that we asser t ;  Albert" is a widely recommended 
mathematical text. 

4 

3. 1 FINITE FIELDS 

Mathematically, the finite field GF(q)  consists of q elements that can be added, sub- 
tracted, multiplied, and divided almost a s  numbers. There is always a field element 

called zero (O), which has the property that any field element p plus or minus zero is P. 
There is also an element called one ( l) ,  such that p * 1 = P; further, p 0 = 0. 

not zero, it has a multiplicative inverse which is that unique field element satisfying the 
equation P P-' = 1; division by p is accomplished by multiplication by p-'. 

If p is 

The simplest examples of finite fields are  the integers modulo a prime number p. 
Fo r  instance, take p = 5; there a r e  5 elements in the field, which we shall write I, 11, 
111, IV, and V, to distinguish them from the integers to which they correspond. Addi- 
tion, subtraction, and multiplication a r e  carried out by converting these numbers into 
their  integer equivalents and doing arithmetic modulo 5. Fo r  instance, I t I11 = IV, 
since 1 t 3 = 4 mod 5; I11 -k IV = 11, since 3 t 4 = 2 mod 5; I III = iii, since i * 3 = 3 

mod 5; I11 IV = 11, since 3 . 4 = 2 mod 5. Figure 4 gives the complete addition and 
multiplication tables for  GF(5). 

I 
I I  
I l l  
I V  
V 

I I I  I l l  I V  v 
I I  I l l  I V  v I I 
I l l  I V  v I I I  I I  
I V  v I I I  I l l  I l l  
V I  I I  I I I I V  I V  
I I I  I l l  I V  v V 

- 

ADDITION TABLE 

I I I  I l l  I V  v 
! . I  \ I  I i i  i i i  I V  

1 1 1  I I V  I I  v 
I V  I l l  I I  I V 
V V V V V 

I I  I V  I I l l  c 

MULTIPLICATION TABLE 

Fig. 4. Arithmetic in GF(5). 

Note that V t p = p, if p is any member of the field; therefore, V must be the zero 
element. I p = p, so  I must be the one element. Since I 

IV IV = I, 1-l = I, 11-' = 111, 1II-l = 11, and IV-1 = IV. 
Also V p = V. I = I1 - III= 
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In Figure 5 by these rules we have constructed a chart of the first 5 powers of the 
field elements. Observe that in every case p5 = P, while with the exception of the zero 
element V, P = I. Furthermore, both I1 and I11 have the property that their first four 
powers a r e  distinct, and therefore yield the 4 nonzero field elements. Therefore if we 
let a denote the element 11, say, I = a = a , I1 = a ,  I11 = a , and 1V = a , which gives 
us a convenient representation of the field elements for multiplication and division, in 

the same way that the logarithmic relationship x = 10 

sentation of the real numbers for  multiplication and division. 

4 

0 4  3 2 

log10 x 
gives us a convenient repre- 

I 
I I  
I l l  
I V  
V 

P P2 P 3  P4 B5 I + , -  X , f  

1 
2 
3 
4 
0 0  

I I  I I I 
I I  I V  I l l  I I I  
I l l  I V  I 1  I 1 1 1  
I V  I I V  I I V  
v v v v v  

Fig. 5. Powers of the field elements. Fig. 6 .  Representations for  GF(5). 

Figure 6 displays the two representations of GF(5) that a r e  convenient for addition 
and multiplication. If P corresponds to a and ab, and y corresponds to c and ad, then 

, and j3 y'l- p + ~ - a t c m o d 5 ,  P - y - a - c m o d 5 ,  p 0 y - a  

a [b-d mod 41, where - means 'corresponds to' and the 'mod 4' in the exponent a r i ses ,  
since a = a'= 1. 

[b+d mod 43 

4 

The prime field of most practical interest is GF(2) ,  whose two elements a r e  simply 

It can be shown21 that the general finite field GF(q) has q = pm elements, where p 
is again a prime, called the characteristic of the field, and m is an arbitrary integer. 
As with GF(5), we find it possible to construct two representations of GF(q), one con- 
venient f o r  addition, one fo r  multiplication. Fo r  addition, an element P of GF(q)  is 
represented by a sequence of m integers, b l ,b2 , .  . . , b  To add P to a ,  we add b l  
to c l ,  b2 to c For  multiplication, it is always possible 

to find a primitive element a ,  such that the first q - 1 

powers of a yield the q - 1 nonzero field elements. 
Thus = ao = 1 (or else the first q - 1 powers would 
not be distinct), and multiplication is accomplished by 
adding exponents mod q - 1. W e  have, if P is any non- 

thus f o r  any P, zero o r  not, pq = P. 

0 and 1. Addition and multiplication tables for  GF(2)  appear in Fig. 7. 

m' 
and s o  forth, all modulo p. 2' 

~ 

zero element, pq-' - (aa)q-' = ( a  q-l)a = la = 1, and 
Fig. 7. Tables for GF(2). 

Thus all  that remains to be specified is the proper- 

Though this is easily done by using polynomials with coefficients from 

ties of G F ( q )  to make the one-to-one identification between the addition and multiplication 
representations. 
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I G F ( P ) , ~ '  21 it is not necessary to  know precisely what this identification is to understand 

the sequel. (In fact ,  avoiding this point is the essential simplification of our presenta- 
tion.) We note only that the zero element must be represented by a sequence of m 
zeros. 

2 As an example of the general finite field, we use GF(4) = GF(2 ), f o r  which an addi- 
tion table, multiplication table, and representation table a r e  displayed in Fig. 8. 

Note that GF(4) contains two elements that 
can be identified as  the two elements of GF(2), 
namely 0 and 1. 
be a subfield of GF(4). In general, GF((ql))  
is a subfield of GF(q)  if and only if q = qla, 

where a is an integer. In particular, if q = 
pm, the prime field GF(p) is a subfield of 

In this case GF(2)  is said to 

a b 0 1  p O a b l  

O b l a  
MU LTlPL ICATION ADD IT 10 N 

GF(q). 
We shall need some explanation to under- 

stand our la te r  comments on shortened RS 
codes. F o r  addition, we have expressed the 

REPRESENTATIONS elements of GF(q) as a sequence of m ele- 

ments from GF(p), and added place-by-place 
according to the addition rules of GF(p), that Fig. 8. Tables for  GF(4). 

is, modulo p. Multiplication of an element 
of GF(q) by some member b of the subfield GF(p) amounts to multiplication by an inte- 
ge r  b modulo p, which amounts to b-fold addition of the element of GF(q)  to  itself, 

which finally amounts to term-by-term multiplication of each of the m terms of the ele- 
ment by b mod p. (It follows that multiplication of any element of GF(pm) by p gives 
a sequence of zeros,  that is, the zero element of GF(pm).) It is perhaps plausible that 
the following facts are true,  as they are21: if q = qla, elements f rom GF(q)  can always 
be expressed as a sequence of b elements from GF(ql) ,  s o  that addition of 2 elements 
f rom GF(q) can be carried out place-by-place according to the rules of addition in 
GF(ql), and multiplication of an element from GF(q) by an element P f rom G F ( q l )  can 
be carr ied out by term-by-term multiplication of each element in the sequence repre- 
senting GF(q) by P according to  the rules of multiplication in GF(q'). 

As an example, we can write the elements of GF(16) as 

2 

2 

2 

00 10 a0 a 0  

01 11 a1 a 1  

Oa l a  aa a 4  

2 2  Oa l a  aa a a  

2 
where a is a primitive element of GF(4). 
example, while a ( a l )  = (a  a) .  

Then, by using Fig. 5, ( l a )  t ( a a )  = (Q 0), for 
2 
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We have observed that p * P = 0 fo r  all elements in a field of characteristic p. In 

particular, if p = 2, P t P = 0, s o  that p = -P and addition is the Same as  subtraction 
in a field characteristic two. Furthermore, (Pty)p = Pp t (7) PP-l t . . . t (pEl) Pyp-l t 

?, by the binomial theorem; but every te rm but the first and last a r e  multiplied by p, 
therefore zero, and (Ptv)’ = Pp t p, when P and y a r e  elements of a field of charac- 
terist ic p. 

3 . 2  LINEAR CODES 

We know from the coding theorem that codes containing an exponentially large num- 
ber  of code words a r e  required ‘to achieve an exponentially low probability of e r ror .  
Linear codes 49 22 can contain such a great number of words, yet remain feasible to gen- 
erate; they can facilitate minimum distance decoding, a s  we shall see. 
class they can be shown to obey the coding theorem. 
whelmingly the codes most studied. 

we can identify the different inputs with the elements of a finite field GF(q). 
f of length n for  such a channel consists of a sequence of n elements from GE(q). 
shall write f = ( f l , f 2 , .  . . , fn ) ,  where f. occupies the ith place. The weight w(f) of f is 

1 A 

defined as the number of nonzero elements in f. 

Finally, as a 
They have therefore been over- 

Assume that we have a channel with q inputs, where q is a prime power, so  that 
A code word 

A 

We 
A A 

A A A 

A linear combination of two words f and f 2  is written Pf t yf,, where P and Y a r e  

each elements of GF(q), and ordinary vectorial (that is, place-by-place) addition in 
2 A 

G F ( q )  is implied. For  example, if f l  = ( f l l , f 1 2 , f 1 3 )  and f 2  = (f 2 1 # f 22 , f 23 1, then 
A -  

f l  - f 2  = (f -f 11 2 1’ 1 2-f 22’ 1 3-f 23)’ 
A linear code of length n is a subset of the qn words of length n with the important 

property that any linear combination of words in the code yields another word in the code. 
A code is nondegenerate if all of its words a r e  different; we consider only such codes. 

A A 

Saying that the distance between two words f l  and f 2  is d is equivalent to saying that 
A A  A -  

the weight of their difference, w(f ,-f-), is d, since f ,  - f ,  will  have zeros in places in - 
1 6  I L .  A 2  

which and only in which the two words do not differ. In a linear code, moreover, f - f 2  . 
must be another code word T,, so  that if there  a r e  two code words separated by dis- 
tance d there is a code word of weight d, and vice versa. 
weight word, which must appear in every l inear code, since 0 * f l  t 0 * f 2 ,  is a valid 
l inear combination of code words, and the minimum distance of a linear code is then the 
minimum weight of any of its words. 

Excluding the all-zero, zero- 

We shall be interested in the properties of se t s  of j different places, or se ts  of 
If the j places a r e  such - size j ,  which will  be defined with reference to a given code. 

that there is no code word but the all-zero word with zeros in all j places, we say that 
these j places form a non-null se t  of s ize  j f o r  that code; otherwise they form a 
set. - 

If there is a set  of k places such that there is one and only one code word corre-  
k sponding to each of the possible q assignments of elements f rom GF(q)  to those k places, 
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then we call it an information se tz3  of s ize  k; thus any code with an information set  of 
s ize  k has exactly q code words. The remaining n - k places form a check set. An 

information set  must be a non-null set; for,  otherwise there  would be two o r  more words 
corresponding to the assignment of all zeros to the information set. 

k 

We now show that all l inear codes have an information set ,  by showing the equiva- 
lence of the two statements: (i) there is an information set  of s ize  k for  the code; 

k (ii) the smallest non-null set  has s ize  k. For an information set  of s ize  k implies q 
code words; to any set of s ize  k - 1 o r  l e s s  there a r e  no more than qk-' different assign- 
ments, and thus there  must be at least  two distinct code words that a r e  the same in those 
places; but then their  difference, though not the all-zero word, is zero in those places, 

so that any se t  of s ize  k - 1 o r  l e s s  is a null set. Conversely, if the smallest non-null 
se t  has s ize  k, then its every subset of k - 1 places is a null set;  therefore there is a 
code word f that is zero in all but the p place, but is nonzero in the pth place; if f has 
P in the pth place, then p-' f is a code word with a one in the pth place, and zeros in 
the remaining information places. The k words with this property a r e  called generators; 

k k clearly, their  q l inear combinations yield q code words that a r e  distinct in the speci- 
fied k places. (This is the property that makes l inear codes easy to generate.) But 
there can be no more than q words in the code, otherwise all sets  of size k would be 
null sets ,  by the arguments above. 
tion set. 
information se t  and, for  some k, q code words. 

k is an information set ,  since to each of the q code words must correspond a different 
assignment of elements to those k places. We say such a code has k information sym- 
bols, n - k check symbols, and dimensionless rate k/n, and call it an (n, k )  code on 

If the minimum distance of a code is d, then the minimum weight of any non-zero 

th 
A 

k 

Thus the smallest non-null set  must be an infornta- 
Since every linear code has a smallest non-null set ,  every l inear code has an 

In fact, every non-null set  of s ize  k k 

G F  (9). 

code word is d,  and the largest  null set  has s ize  n - d. 
set  must have s ize  n - d t 1 o r  l e s s ,  so that the number of information symbols is 
n - d t 1 o r  less ,  and the number of check symbols d - 1 o r  greater. Clearly, we desire 
that f o r  a given minimum distance k be as large as possible; a code that has length n, 
minimum distance d, and exactly the maximum nummr 0; i d u i i i i Q t i G L  ;-;11=1-:1~, II - 
will  be called a maximum code. 

Therefore the smallest non-null 

+ 1 .  
24 

We now show that a code is maximum if and only if every se t  of size n - d t 1 is an 
information set. For  then no set  of s i ze  n - d t 1 is a null set ,  thus no code word has 
weight d - 1 o r  less ,  and thus the minimum weight must be greater than or  equal to d; 
but it cannot exceed d, since then there would have to  be n - d o r  fewer information 
symbols, so the minimum weight is d. then the 
minimum weight of a code word is d, so that no set  of s ize  n - d t 1 can be a null set ,  
but then all a r e  information sets. 

Fo r  example, le t  us investigate the code that consists of all words 7 satisfying the 

Conversely, if the code is maximum, 

n 2. A 

equation f t f 2  t . . . t f n  = f i  = 0. It is a linear code, since if f and f z  satisfy this 
i= 1 
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L A  

equation, ?3 = (Pf l tyf2)  also satisfies the equation. Let us assign elements from GF(q) 
th arbitrarily t o  all places but the p . 

with these elements in these places, f must be the unique solution to  

o r  f =-I f..  1 

In order for there to  be one and only one code word 

P 

1 f i t f  = o ,  
i fp  i fp  

P P 

Clearly, this specifies a unique f that solves the equation. 
set  of n - 1 places is thus an information set, so  that this code is a maximum code with 
length n, n - 1 information symbols, and minimum distance 2. 

a. Weight Distribution of Maximum Codes 

In general, the number of code words of given weight in a l inear code is difficult o r  

Surprisingly, determination of the weight distribution of a maximum code pre- 

Suppose a maximum code of length n and minimum distance d, with symbols from 

GF(q); in such a code there  a r e  n - d t 1 information symbols, and, as  we have seen, 
every set  of n - d t 1 places must be an information set, which can be used to generate 
the complete set of code words. 

Aside from the all-zero, zero-weight word, there a r e  no code words of weight less 
than d. Take an 
arbitrary set of d places, and consider the set  of all code words that have all zeros in 
the remaining n - d places. 
have weight d, since no code word has weight l e s s  than d. 
consisting of the n - d excluded places plus any place among the d chosen; by assigning 
zeros to the n - d excluded places and arbitrary elements to  the last place we can gen- 
erate  the entire set  of code words that have zeros in all n - d excluded places. There 
a r e  thus q such code words, of which q - 1 have weight d. 
for  an arbitrary set of d places, the total number of code words of weight d is (:) (q-1). 

Similarly, let us define by Mdta the number of code words of weight d t a that are 
nonzero only in an arbitrary set of d t a places. 
excluded places plus any a t 1 places of the d t a chosen, we  can generate a total of q 
code words with all  zeros in the n - d - a excluded places. 
weight d t a, since for every subset of s ize  d t 1, 0 < i S a - 1, there will  be Mdti code 
words of weight d t i, all of which will  have all zeros in the n - d - a excluded places. 
Subtracting also the all-zero word, we obtain 

Since p is arbitrary,  every 
P 

impossible to determine; for many codes even d, the minimum weight, is not accurately 
known. 
sents no problems. 

To find the number of code words of weight d, we reason as follows. 

One of these words will  be the all-zero word; the rest must 
Consider the information set 

Since this argument obtains 

Taking as an information set  the n - d -a  
a t 1  

Not all of these will have 

a- 1 

Mdta = qat' - 1 - 1 c::) Mdti* 
i = O  

From this recursion relation, there  follows explicitly 
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i= 0 

Finally, since there a r e  Mdta words of weight d t a in an arbitrary set  of d t a places, 
we obtain for Ndta, the total number of code words of weight d t a, 

We note that the summation in the expression for  Mdta is the first  a t 1 terms of the 

. Also, we may a t 1  binomial expansion of (4-1 ) dta-l 4 I, SO that as  q - 00, Mdta - q 

upperbound Mdta by observing that when we generate the qatl code words that have all 
zeros in an arbitrary n - d - a places, only those having no zeros in the remaining a t 1 
information places have a chance of having weight d t a, s o  that 

3 . 3  REED-SOLOMON CODES 

We can now introduce Reed-Solomon codes, whose properties follow directly from 
those of van der Monde matrices. 

a. Van der  Monde Matrices 

An ( n t l )  X ( n t l )  van der Monde matrix has the general form: 

where the a. a r e  members of some field. The determinant of this matrix, D, also a 

member of the field, is a polynomial in the ai in which no ai appears to  a power greater  
than n. Furthermore,  since the determinant is zero if any two rows a r e  the same, this 
polynomial must contain as factors ai  - a all i f j ,  so that 

1 

j' 

D = D' Il (ai-a.). 
i> j J 

But now the polynomial fl (a,-a,) contains each a, to  the nth power, so  that D' can only 
1 

n i>j J 

be a constant. Since the coefficient of 1 a a l  a a i  * an in this polynomial must be one, 
DI = 1, and D = n (ai-aj). 

i> j 
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Now suppose that all the ai a r e  distinct. Then ai - a .  # 0, i # j ,  since the ai a r e  
J 

members of a field. 
and therefore the determinant D is not zero if and only if the a.  a r e  distinct. 

For  the same reason, a product of nonzero te rms  cannot be zero, 

1 
Similarly, 

m m o t l  ... a 
0 0 

m t n  
0 

m m o t  1 

n ... a n n a ' a  

Thus the determinant of such a matrix, when mo # 0,  is not zero if and only if the ai 
a r e  distinct and nonzero. 

b. Reed-Solomon Codes 
2. 

A Reed-SolomonZ5 code on GF(q) consists of all words f of length n S q - 1 for  
which the d - 1 equations 

a r e  satisfied, where mo and d a r e  arbitrary integers, and a is a primitive element of 

GF(q)* 
Clearly, an R S  code is a linear code, since ifFl and? a r e  code words satisfying the 

equations, pf, t yfz = f 3  satisfies the equations. 
places of an RS  code can be taken to be an information se t ,  and therefore that an RS code 
is a maximum code with miniinum distance d. 

2 2. A 

We shall now show that any n - d + 1 

n 

i= 1 
We define the locator Zi of the ith place as ai; then we have fi(Zi)m = 0, mo 

m S mo t d - 2. We note that since a is primitive and n S q - 1, the locators a r e  dis- 
tinct nonzero elements of GF(q). Let us arbitrari ly assign elements of GF(q) to n - d t  1 

places; the claim is that no matter what the places, there is a unique code word with 
those elements in those places, and therefore any n - d t 1 places form an information 
set  S. TO prove this, we show that it is possible t o  solve uniquely for  the symbols in 
the complementary check set  3, given the symbols in the information set. 
tors  of the check set  5 be Y 
there  is a set of d. that with the given information symbols forms a code word, then 

Let the loca- 
l S j S d - l ,  and the corresponding symbols be d If 

j' j' 
J 

32 
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By defining Sm E - fi(Zi)m, these d - 1 equations can be 
i c S  

: I : I  

m m o t  1 
yd-: yd- 1 ... yd- motd-2] 1 dd- 1 1 ‘motd-2- 

written 

The coefficient matrix is of the van der Monde-like type that we examined above, and 

has nonzero determinant, since each of the locators is nonzero and distinct. 
there is a unique solution for  the d. for  any assignment to the information places, so that 

J 
an arbi t rary set  of n - d t 1 places can be taken as an information set. 
Reed-Solomon codes a r e  maximum and have minimum distance d. 
tribution of their  weights has already been determined. 

Therefore 

It follows that 
The complete dis- 

As examples, RS codes on GF(4) have length 3 (or less).  The code of all words sat-  
isfying the single equation f t f t f = 0 (m =0) has minimum distance 2. Taking the 
last symbol as the check symbol, we have f 3  = f + f 2  (we omit minus signs, since we 
are in a field of characteristic two), so  that the code words a r e  

2 3  0 

2 2  000 10 1 QOQ Q O Q  

2 011 110 Q ~ Q  Q 1Q 

The code of all words satisfying f , t f 2  t f = 0 and f t f 2 Q  t f 3Q2 = 0 (mo=o) has 
minimum distance 3. Letting f = af and f 3  = a’f 1, w e  get tne coue WUI & 

2 2 000 ~ Q Q  QQ 1 Q la .  
2 4 

The code of all words satisfying f + f2a  t f 3a2 = 0 and f t f 2 Q  t f 3~ = 0 (mo= 1) 

also has minimum distance 3; its code words a r e  

2 2 2  000 111 QQQ Q Q Q . 
c.  Shortened RS Codes 

A Reed-Solomon code can have length no longer than q - 1, for that is the total num- 
ber  of nonzero distinct elements from GF(q) which can be used as locators.. (If mo=O, 
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we can also let  0 be a locator, with the convention O o = l ,  t o  get a code length 9.) If we 

desire a code length n q - 1, we can clearly use any subset of the nonzero elements 
of GF(q)  as locators. 

Frequently, in concatenating codes, we meet the condition that q is very large, while 
n needs to be only moderately large. Under these conditions it is usually possible to  
find a subfield G F ( q f )  of GF(q) such that n < 9'. A considerable practical simplification 
then occurs when we choose the locators from the subfield of GF(qf).  
q f b  = q, we can represent a particular symbol f i  by a sequence of b elements f rom 

m 
G F  (9' 1 s  (fil , f i 2 ,  s fib). The conditions C fiZi 

Recall that if 

= 0, mo m mo t d - 2 then become 
1 

the conditions C f..Zm = 0, mo < m mo t d - 2, 1 j b, since when we add two f i  
i 1J 

or  multiply t h e k  by Z m ,  we can do so term-by-term in GF(q1). In effect, we a re  inter- 
lacing b independent Reed-Solomon codes of length n < qf - 1. The practical advantage 
is that rather than having to  decode an RS code defined on GF(q), we need merely decode 
RS codes defined on the much smaller field GF(q ' )  b times. The performance of the 
codes cannot be decreased by this particular choice of locators, and may be improved if 
only a f ew constituent elements from G F ( q f )  tend to be in e r r o r  when there is an e r r o r  
in the complete symbol from GF(q). 

As  an example, if we choose mo = 1 and use locators from GF(4) to  get an RS code 
on GF(16) of length 3 and minimum distance 3, by using the representation of GF(16) in 
te rms  of GF(4), we get the 16 code words 

o r  in effect two independent RS codes on GF(4). 

3 . 4  BCH CODES 

We shall now give a general method fo r  finding a code with symbols from GF(q)  of 
length n and minimum distance at least  d. 
the best choice, since it is maximum. 
want a binary code, q = 2, and the longest RS code has length one. 
a satisfactory solution to  this problem when n is not extravagantly large,  and a r e  the 
only general solution known. 

Then there  is an RS code on GF(qa) with 
length n and minimum distance d. Since GF(q)  is a subfield of GF(qa), there will  be a 
certain subset of the code words in this code with all symbols in GF(q). The minimum 
distance between any two words in this subset must be at least  a s  great as the minimum 
distance of the code, so that this subset can be taken as a code on GF(q)  with length n 

If n < q - 1, of course, an RS code wi l l  be 
But often n is larger  than q; for instance, if we 

26,27 are BCH codes 

Let US find an integer a such that qa > n. 
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and minimum distance at least  d. Any such subset is a BCH code. 
We shall call GF(q)  the symbol field and GF(qa) the locator field of the code. 
For  example, f rom the three RS codes on GF(4) given as examples, we can derive 

the three binary codes: 

a )  000 b )  000 c )  000 
011 111 
10 1 
110 

Since the sum of any two elements from GF(q) is another element in GF(q), the sum 
of any two words in the subset of code words with symbols f rom GF(q)  is another word 
with symbols from GF(q) ,  so that the subset forms a l inear code. 

be q words in the code, where k has yet to  be determined. How useful the code is 
depends on how large k is; example b)  shows that k can even be zero, and examples b)  
and c )  show that k depends in general on the choice of mo. We now show how to find the 
number of information symbols in a BCH code. 

There must therefore 
k 

Since all code words a r e  code words in the original RS code, all must satisfy the 
equations 

1 fiZ?=O, m S m S m o t d - 2 .  
0 

am m Let the characteristic of the locator field GF(qa) be p; then qa = p 
raising to  the q 

these eqiiations to the qth power, we obtain 

, q = p , and thus 
th 

power is a linear operation, (P ty)q  = Pq t yq. Raising each side of 

0 =(I f iZ r )q  = I f:Zyq = 1 fiZyq, m 0 S m S m 0 t d - 2. 

Here.  we have used f: = f ;  since f i  is an element of GF(q). 
we obtain 

Repeating this operation, 
L 

a where the process terminates at j = a - 1, since Zm is an element of GF(q ), and there- 

fore  (Zm)qa = Zi . Not all of these equations a r e  different, since if mqj = mlqj' 

mod q - 1 for some m' f m, and j1 # j ,  then Z y q  = Zm , for  all i. Let us denote 

by r the number of equations that a r e  distinct -that is, the number of distinct integers 
modulo q - 1 in the set  

i 
m 

j j' 
1 
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a- 1 m t d - 2, q(motd-2), ..., q (motd-2). 
0 

Clearly, r S a(d-1). We label the distinct members of this set  me, 1 S Q C r. 
We now show that r is the number of check symbols in the code. Let p be any ele- 

a b b t l  ment of GF(q ) with r distinct consecutive powers p , p We claim that 

the places whose locators a r e  these r consecutive powers of p may be taken as  a check 
set ,  and the remaining n - r a s  an information set. 
set  S be chosen arbitrarily. A code word is uniquely determined by these information 

symbols if there is a unique solution to  the r equations Z f.(Zi) I, 1 S I S r, which 

, . . . , pbtr-l. 

Let the symbols in the information 

m 
1 

in matrix form is  

2 
(b+l )m2 (btr- 1 )m 

P ... p bm2 P 

03+1 )mr (b tr- 1 )m ... p bmr P 

in which we have defined SI E Z fiZi K. The coefficient matrix is van der  Monde-like 

(for a different reason than before), and since pmp a r e  all nonzero and distinct, the 
equations have the solution as claimed. 

Suppose we raise Eqs. 41 to  the ah power; we get a superficially new set  of equations 
of the form 

i E S  

We must show that the fbti that solve Eqs. 41 a r e  elements of the symbol field GF(q). 

But for i E S, f i  E GF(q), so f: = fi. Furthermore,  Eqs. 42 a r e  exactly the r distinct 
Eqs. 2, since Eqs. 2 a r e  the distinct equations in Eqs. 1. Thus f z , f z t l , .  . . ,fztr-l solve 

which Eqs. 41 for the same information symbols f i ,  i E S, as did f b , f b t l , .  . . , fb t r - l ’  

were shown to be the unique solution to  Eqs. 41. Therefore fbti = ibti; but the elements 
of GF(q ) which satisfy pq = p a r e  precisely the elements of GF(q)  , so  that the fbti a r e  
elements of GF(q) .  

Thus the code has an information set  of n - r symbols, and therefore there  a r e  qn’r 
code words. 

9 
a 
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. 

We remark that any set of r places whose locators can be represented as r consec- 
utive powers of some field element is thus a check set ,  and the remaining n - r an infor- 
mation set. 
lower bound to  their  number. 

(qa=16) and minimum distance 7, with m chosen a s  1, we wr i te  the set  

In general every information se t  cannot be s o  specified, but this gives us a 

For  example, to  find the number of check symbols in a binary code of length 15 

0 

1, 2, 4, 8 

3, 6, 12, 9 (24=9 mod 15) 

5, 10 (20=5 mod 15) 

where we have excluded all duplicates. 
(15,5) binary Bose-ChaudhuriZ6 code. 

There a r e  thus 10 check symbols. This is the 

a. AsvmDtotic ProDerties of BCH Codes 

We recall that for large n the Gilbert bound guarantees the existence of a code with - 

In (q-1) . With a BCH ( 6 )  
In a ti 1 n a  minimum distance n and dimensionless rate k/n = 1 --- 

code we a r e  guaranteed to need no more than a(d-1) = an6 'check symbols to  get a mini- 
a mum distance of at least  d = n6, but since q must be greater than n, a must be greater 

than In n/ln q, so  that for  any fixed nonzero 6, an6 exceeds n for very large n. 
at least to  the accuracy of this bound, BCH codes a r e  useless for very large n. 
well to  point out, however, that cases a r e  known in which the minimum distance of the 
BCH code is considerably larger  than that of the RS code from which it was derived, and 
that it is suspected that their  asymptotic performance is not nearly a s  bad as  this result 
would indicate. 

Thus, 
It is 

But nothing bearing on this question has been proved. 

37 



IV. DECODING BCH CODES 

We shall present here a decoding algorithm for BCH codes. Much of it is based on 
the e r r o r  -correcting algorithm of Gorenstein and Zierler"; w e  have extended the algo- 
ri thm to do deletions-and-errors and hence generalized minimum-distance decoding 
(cf. Section 11). 
step. 

Since we intend to use a Reed-Solomon code as the outer code in all of our concatena- 
tion schemes, and minimization of decoder complexity is our purpose, we shall consider 
in Section VI in some detail the implementation of this algorithm in a special- o r  
general -purpose computer. 

We have also appreciably simplified the final, erasure-correcting 
27 

Variations on this algorithm of lesser  interest are reported in Appendix A. 

4.1 INTRODUCTION 

In Section 111 we observed that a BCH code is a subset of words from an RS code on 
GF(q) whose symbols a r e  all members of some subfield of GF(q). Therefore we may use 
the same algorithm that decodes a certain RS code to decode all BCH codes derived f rom 
that code, with the proviso that if the algorithm comes up with a code word of the RS code 
which is not a code word in the BCH code being used, a decoding failure is detected. 

Let US then consider the transmission of some code word f = ( f l ,  f 2 ,  . . . , fn) from a 
BCH code whose words satisfy 

i 

where the Zi, the locators, are nonzero distinct elements of GF(q). In examples we shall 
use the RS code on GF( 16) with n = 15, mo = 1, and d = 9,  and represent GF( 16) as follows: 

0 0000 a3 0001 a7 1101 a l l  0111 

1 1000 a4 1100 a8 1010 a12 1111 

a 0100 a5 0110 a9 0101 a13 1011 

a 2  0010 a6 0011 a10 1110 a14 1001 

-i 15-i W e  shall let  Zi = a 

W e  suppose that in the received word r = ( r l ,  r 2 ,  . . . , rn) ,  s symbols have been 

classed as unreliable, o r  erased. Let the locators of these symbols be Yk, 1 d k C s, 
and if the k 

sibly zero. Let 
the locators of these e r r o r s  be X j 6 t ,  and i f  the th e r r o r  is in the ith place, let 
i ts  value e j  = ri - fi ,  where now e .  f 0. We define the parity checks, o r  syndromes, 

= a 
A 

th deletion is in the ith place, let dk = r - f i  be the value of the deletion, pos- i 
Also, of the symbols classed as reliable, let t actually be incorrect. 

1 
j' 

J 
sm by 
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. . 

then 

= ejXj" t 1 dkYr .  
j k 

The decoding problem is to find the e . ,  X., and dk f rom the S 
algorithm solves this problem whenever 2t $. s c d. 

and Yk. The following J J  m 

W e  shall find it convenient in the sequel to define the column vectors 

- A 

S(a,b) = (Sa,Sa-l, .. , , Sb)=, m S a C b C m t d - 2 
0 0 

P 

X. E (XT, XY-', . . . , X:s , and 
J(a, b) 

2 T 
Yk(a,b) (Yt, y;-', . . . , Y;) . 

Evidently, 

j= 1 k= 1 

Finally, le t  us consider the polynomial u ( Z )  = 0 defined by 

u(Z) = (Z-Z1)(Z-Z2) . . . (Z-Z,), 

where Z 

Expanding (Z),  we  get 

a r e  members of a field. Clearly u(Z) = 0 Ir ana oriiy LT Z G y z l s  -f the 7 P 

u(Z) = z L - (Z1 tZ2 t . .  . tZ,)Z L- 1 t . . . t (-1) L (Z1Z2. .  . ZL). 

The coefficient of (-l)L-PZP in this expansion is defined as the L -  Pth elementary sym- 
metric function u as the 
row vector 

of Z1, Z2, . . . , ZL; note that u is always one. We define L-P 0 

(uo, -u1, . . . , (-1) L ITL); 

then the dot product 
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where 

T 

A L L-1 
Z E (z ,z , . . . ,  1 y  . (L ,  0)  

4 . 2  MODIFIED CYCLIC PARITY CHECKS 

The Sm a r e  not the only parity checks that could be formed; in fact, any linear com- 
bination of the Sm is also a valid parity check. W e  look for a se t  of d - s - 1 independ- 
ent parity-check equations which, unlike the Sm, do not depend on the erased symbols, 
yet retain the general properties of the Sm. 

Let d be the vector of the symmetric functions adk of the erasure locators Yk. 

define the modified cyclic parity checks T by 

We d 

e 
A T =$  P - d S(motPts ,motP)~  

Since we must have m S m m o t  1 and m o t  l t s S m o t d - 2 ,  the range of 1 is O S  l G d - s - 2 .  
In the case of no erasures ,  TI = Sm tP. Now, since 

0 

S 
m +I, m o + L  

s ( m o t ~ t s ,  motP) J J  X. 1 dkYk yk(s, 0) ’  J (S ,  0) 
j= 1 k= 1 

0 = e.X.  
A 

we have 

mot  P S m 
= e.X ‘u (X.)X! t dkYk ud(Yk) 

J J  ~ J J  . .  

j= 1 k= I 

t 
= 1 E.X.  P 

J J ’  
j= 1 

m 
0 in which we have defined E .  2e.X u (x ) and used ud(Yk) = 0 ,  since Yk is one of the 

erasure locators upon which ad is defined. The fact  that the modified cyclic parity checks 
can be expressed as the simple function of the e r r o r  locators given by Eq. 42 allows US 

to solve for  the e r r o r  locators in the Same way as if there were no e rasures  and the 
minimum distance were d - s. 

J ~ J ~  d j 
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4.3  DETERMINING THE NUMBER OF ERRORS 

2t -2t 
[,,l ,t-1 2 ' . .  xp'1 [Elxi 0 ... 0 1 

2to-2t 
. . .  0 0 E2X2 

Xt-2 xt-2 .J-2 
2 ' ' _  t 

1, ->+ 

If d - s  is odd, the maximum number of e r ro r s  that can be corrected is t = (d-s-l)/Z, 
t 1 a re  

0 
while if  d - s is even, up to to = (d-s-2)/2 e r r o r s  are correctable, and t 
detectable . 

0 

We now show that the actual number of e r r o r s  t is the rank of a certain t X to 
matrix M, whose components a r e  modified cyclic parity checks, as long as t 6 to. In 
order  to  do this we use the theorem in algebra that the rank of a matrix is t if and only 

if there is at least  one t X t submatrix with nonzero determinant, and all (t+l) X (t+l) 
submatrices have zero determinants. We also use the fact that the determinant of a 
matrix which is the product of square matrices is the product of the determinants of the 
square matrices. 

0 

26 THEOREM (after Gorenstein and Zierler ) :  If t 6 to, then M has rank t, where 

- x y  xt-2 . . .  I 

Xt-l Xt-2 . . .  1 

. -. 

M E  

T2to-2 

T2t -3 
0 

Tt -1 I! 0 

T2to-3 

T2t -4 
0 

Tto-2 

. . .  

... 

. . .  

Tt -1 

;j. TO 

Since 2to - 2 < d - s - 2 ,  all the T in this matrix a r e  available. 

of M. 

P 
PROOF: First consider the tXt  submatrix Mt formed by the first t rows and columns 

Using Eq. 42, we can write M, as the product of three t X t matrices as follows: 

M =  t -  

T2t -2 T2to-3 ' ' .  T2t -t-l 

'2to-3 '2to-4 " '  '2to-3 

T2to-t-1 T2t0-t-2 . ' ' T2to-2t 

as may be checked by direct  multiplication. 
2to-2t 

The center matrix is diagonal, and therefore has determinant E.X.  ; since 
J J  m j 

E .  = e.X.  

matr ices  a r e  van der  Monde, with determinants 

e r r o r  locators a re  distinct. 
factors ,  and is therefore itself nonzero. 

(X ), X. # Y and e .  # 0,  this determinant is nonzero. The first and third 
J J J  d j J k' J 

(Xi-Xj), which is nonzero since the 
c>j 

The determinant I Mt I is then the product of three nonzero 

Now consider any of the (tt 1) X (tt 1) submatrices of M, which will have the general 
Thus the rank of M is t or greater.  

form 
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‘aotbo Taotbl ’ ’ ’ Taotbt 

‘altbo Taltbl  ‘ ’ ’ =altbt 

Tattbo Tattbl ‘ .  ‘ Tattbt 

a a 
Y10 x2 a0 ... x t o  0 

X;‘ Q al  al Y 1  x2 ... 
. .  . .  . .  

s”t x; t ... x: Q 

E l  0 . . .  0 0 

0 EZ . . .  0 0 

. .  . .  . .  

Et O 0 0 . . .  
0 0 . . .  0 0 

x;o xz bl bt 
X2 

bt 
x: . . .  Xt 

0 0 . . .  0 

Again, this may be checked by direct multiplication with the use of Eq. 42. Each of the 
three factor matrices has an all-zero row and hence zero determinant; therefore all 

( t t l )  X ( t t l )  submatrices of M have zero determinants. Thus the rank of M can be no 

greater than t; but then it is t. 

4 . 4  LOCATING THE ERRORS 

We now consider the vector of elementary symmetric functions ue of the X., and J j its associated polynomial 

A 
u (x) =e e X(t,o)’ e 

where 

If we could find the components of set we could determine the e r r o r  locators by finding 
the t distinct roots of ue(X). If we define 

then from Eq. 4 2  

and we have 

I’ E.X. u (X.) = 0,  0 d I’d d - s - t - 2. 
J J  e J 

j= 1 

We know that the first component of ee, u equals one, so  that this gives us a se t  of 
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2to - t equations in t unknowns. 
specified by 2to - 2t d 1' Q 2to - t - 1, which in matrix form a r e  

Since t d t by assumption, we can take the t equations 
0 

- 
T2t0-l 

T2t -2 
0 

T2to-t 
- 

T2to-3 T2t 0 -d 

T2t 0 -t-1 TZto-t-Z - 
or ,  defining 

- 
.. . TZto-t-l 

.. . TZto-t-2 

%to- 2 t ... 
- 

Since 0 G 2to - 2t and 2to - 1 C d - s - 2, all of the T needed to form these equations 
a re  available. 

We have already shown that Mt has rank t, so that these equations a re  soluble for 

I 

2 
ul and hence Ge. 
tion of ue(Z.) for each i wi l l  reveal in turn the positions of all t e r rors .  

Then since u (Zi) is zero if and only if Zi is an e r r o r  locator, calcula- e e 
1 

a. Remarks 

The two steps of finding the rank of M and then solving a set  of t equations in t equa- 
tions in t unknowns may be combined into one. For ,  consider the equations 

where 

A 

u" = (-uel, Ue2, . . . , (-l?u , 0, . . . , 0). 
et e 

An efficient way of solving (44) is by a Gauss-Jordan2* reduction to upper triangular 
form. Since the rank of M is t, this will  leave t nontrivial equations, the last  to-t equa- 
tions being simply 0 = 0. But now M is the upper left-hand corner of M, so that the upper 
left-hand corner of the reduced M wi l l  be the reduced Mt. 
point se t  the last  to - t components of u; to zero, and get a se t  of equations equivalent 
to (44), which can be solved for ?;. Thus we need only one reduction, not two; since 
Gauss-Jordan recudtions tend to be tedious, this may be a significant saving. 

This procedure works whenever t G to - that is, whenever the received word l ies 

t 
Therefore, we can at this 

a 
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within distance to of some code word, not counting places in which there are erasures.  
It wil l  generally be possible to receive words greater than distance to from any code 
word, and upon such words the procedure discussed above must fail. This failure, cor -  
responding to  a detectable error, will turn up either in  the failure of Eq. 44 to be reduc- 
ible to the form described above or in ue(X), which has an insufficient number of nonzero 
roots. 

Finally, if d - s is even, the preceding algorithm will locate all e r r o r s  when t to = 
(d-s-2)/2. Also, if t = to t 1, an uncorrectable e r r o r  can be detected by the nonvanishing 
of the determinant of the t X t matrix with Td-s 

Such an e r ror  would be detected anyway at some la ter  stage in the correction process. 

in the upper left, To in the lower right. - 

b. Example 1 

Consider the (1 5,7) distance 9 RS code that has been introduced. Suppose there occur 
4 e r r o r s  of value a 

value 1 in the second position and a7 in the third position. 
in the f i r s t  position and a in the fourth position, and erasures  of 

In this case the parity checks S will turn out to be 

S1 = u14,  S = a13, S = a5, S = a 6 , S = a 9 ,  S6 = a13, S = a", andS  = a 4 . 
2 3 4 5 7 8 

With these eight parity checks and two erasure locators, the decoder must find the 
number and position of the e r rors .  First it forms 

(Since we  are working in a field of characteristic two, where addition and subtraction 
a r e  identical, we omit minus signs.) 

Ud = 1 
0 

' 3 . a  12 = a  10 . u = Y Y  = a  1 2  d2 

Next it forms the s ix  modified cyclic parity checks T by Eq. 41. f2 
5 To = Sg t u S t u S = a t a a13 + . a14 = a5 +- a14 -t a9 dl 2 d2 1 

= (0110) + (1001) + (0101) = (1010) = a 8 
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T 1 = S 4 t u  S t u  S = a  8 
dl 3 d2 2 

3 13 3 T 2 = 0 ,  T = a ,  T = a  , T 5 = a .  3 0 

I Equations 44 now take the form 

3 a3 = a13u t a u 
el  e2 

3 a13 = a u 
e l  

a3 = 

8 t a  u 
e3 

8 8 a u + a  u e .  
2 3 e 

l By reducing these equations to upper triangular form, the decoder gets 

5 5 a = u  t a u  
2 e e l  

a10 = u t ue 
e2 3 

0 = 0. 

From the vanishing of the third equation, it learns that only two e r r o r s  actually occurred. 
Therefore it sets  ue to zero and solves for u and u , obtaining 

3 el e2 

10 10 u e l = a  ’ e = a  * 

2 

Finally, it evaluates the polynomial 

2 2 10 10 u e ( X ) = X  t u e X t u  = X  t a  X t a  , 
1 e2 

11 for  X equal to  each of the nonzero elements of GF(16); ue(X) = 0 when X = a14 and X =  a 
s o  that these a re  the two e r r o r  locators. 

, 

4 . 5  SOLVING FOR THE VALUES OF THE ERASED SYMBOLS 

Once the e r r o r s  have been located, they can be treated a s  erasures.  We a re  then 
interested in the problem of determining the values of s t t erased symbols, given that 
there a r e  no e r r o r s  in the remaining symbols. To simplify notation, we consider the 
problem of finding the dk, given the Yk, 1 d k S s, and t = 0. 

of them for  the d. 
Since the parity-check equations a re  linear in the erasure values, we could solve s 

There is another approach, however, which is more efficient. 

As an aid to understanding the derivation of the next equation, imagine the following 
situation. To find dk , suppose we continued to t reat  the remaining s - 1 erasures  as  

0 
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erasures ,  but made a stab at guessing dk . This would give us a word with s - 1 erasures  

and either one or  (on the chance of a correct  guess) zero e r ro r s .  

matr ix  M would therefore be either zero or one; but M would be simply a single modi- 1 1 
fied cyclic parity check, formed from the elementary symmetric functions of the s - 1 
remaining erasure locators. Its vanishing would therefore tell us when we had guessed 
dk correctly. 

0 
The rank of the 

A 
0 

To derive an explicit formula, let  koud be the vector of elementary symmetric func- 

tions of the s - 1 erasure locators, excluding Yk . Since t = 0 ,  we have from (41) 
0 

m td-s-1, 

k(s-l ,o) = 2 dkYko Y 
A 

S(motd-Z, motd-s-1) 
k= 1 

and therefore 

motd-s-l) 

motd-s-1 motd-s-1 
= d  Y ko0-d(Yhg) 1 dkYk ko 0- d (Y k 1 

ko ko k#ko 

motd-s-1 

= d  ko Y ko k:d(yko) 

since u (Y ) = 0,  k # ko. Thus ko d k 

T k- d-s-1 
U 

dk - motd-s-1 
0 

yk 0 k:d (yk,> 

This gives us our explicit formula for  dk , valid for  any s: 
0 

- - S S ‘motd-2 koudl motd-3 -t k:dZ motd-4 * ’ 

motd-2 motd-3 mot d-4 
koudlYko koudZYko 

dk = 
... - - 0 

0 
yk 

(45) 

Evidently we can find all erasure values in this way; each requires the calculation 
of the symmetric functions of a different s - 1 locators. 
we could modify all parity checks to account for  this information as follows: 

Alternatively, after finding d l ,  

1 i.. A A - 
[S{motd-2, mo) - S(motd-2,mo) - dlYl(mo+d-2, mo) ’ 
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. 

and solve for d2 in te rms  of these new parity checks and the remaining s - 2 erasure loca- 

tors ,  and so forth. 
I 

A similar argument leads to the formula for  e r r o r  values, 
2 -  

. U '  
J, e T(d-s-2, d-s-t-1) 
" e .  = motd-s-t-1 9 

J O  X .  . 0- (x. )u (x ) 
JO J, e J, d jo 

in te rms  of the modified cyclic parity checks. We could therefore find all e r r o r  values 
by this formula, modify the parity checks Sm accordingly, and then solve for  the e ra -  

sure  values by Eq. 45. 

a. Example 2 

As a continuation of Example 1 ,  let  the decoder solve for e l .  The elementary sym- 
metric functions of X2, Y1 ,  and Y2 a r e  

u 3 = X Y  Y = a  6 , u 2 = Y 2 Y l t x 2 Y z t x Y  = a  3 , u l t x 2 t Y l t Y 2 = a .  6 2 1 2  2 1  

Theref ore  

e2 can be found similarly, o r  the decoder can calculate 

s i = s  t a X 1 = a  4 8 13 , S ' = S 7 a X  t 4 7  = a ,  3 s ~ = s 6 t a x 1 = o .  4 6  
8 7 1 

Since 

lo a ' = Y t Y = a ,  
u i = Y Y  1 2 = a  9 1 1 2  

a13 t a a 3 1 1  
e z = a 1 3 t a -  a 2 t u  1 0 .  a 6 = ( 1 1 0 =  '* 

2 Also, Sn = a , S; = 0, 8 

2 
U 

s o d  = 13 = 1 ,  u t a  1 2 .  a 

a l 3  7 a .  and, withSgm = a  , d2 z6= 
13 

CL 

4 . 6  IMPLEMENTATION 

We now consider how a BCH decoder might be realized as  a special-purpose com- 
puter. We shall assume the availability of an arithmetic unit able to realize, in 
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approximate order  of complexity, the following functions of finite field elements : addition 
(X=X1tX2), squaring (X=X ), multiplication by am, mo G m C m t d - 2 (X=a X1). 
Furthermore, because of the bistability of common computer elements, we shall assume 

p = 2, so  that subtraction is equivalent to addition and squaring is linear. 
locators Zi = a 
converted to their representations in the locator field GF(q) = GF(2 
ations a r e  carried out in the larger  field. 

Petersonz9 and Bartee and Schneider3' have considered the implementation of such 
an arithmetic unit; they have shown that multiplication and inversion, the two most dif- 
ficult operations, can be accomplished serially in a number of elementary operations 
proportional to M. All regis ters  wi l l  be M bits long. Thus the hardware complexity is 
proportional to some small power of the logarithm of q, which exceeds the block length. 

by estimating the number of multiplications required by each and the number of memory 
regis ters  . 

buffer, awaiting correction. 
access to this sequence is required, until the sequence is read out and corrected. 

2 m 
0 

We let  the 
Finally, we shall assume that all elements of the symbol field are n-i . 

M ), and that all oper- 

We attempt to estimate the approximate complexity of the algorithms described above 

During the computation, the received sequence of symbols must be stored in some 
Once the Sm and Yk have been determined, no further 

The calculation of the parity checks 

m m(n-1) m(n-2) S r r ( a  ) = r l a  t r2a  t ... t rn m 

is accomplished by the iteration 

'm = ( ( r lamtr  2 )amtr3) am t r4 . . . 
which involves n - 1 multiplications by am. 
requiring d - 1 registers.  

d - 1 such parity checks must be formed, 

z ad can be calculated at the same time. We note that 

a =  dk koudkt yk k ad(k-l)' 
0 0  

-.I ud can be calculated by this recursion relation as each new Yk is determined. 
a new Y requires S I  multiplications when st are already determined, SO that the total 
number of multiplications, given s erasures, is 

Adding 

k 

s - 1 t s - 2 t . . .  = (i) <d2/2. 

s memory registers are required (Ud = 1). 
The modified cyclic parity checks T are then calculated by Eqs. 40. Each requires P 

s multiplications, and there a r e  d - s - 1 of them, so that their  calculation requires 
s(d-s-1) < d /4 multiplications and d - s - 1 memory registers. 

0 

2 

2 Equations 44 are then set  up in t (t +1) < d /4 memory registers.  In the worst case,  
0 0  
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t = t , the reduction to upper triangular form of these equations wi l l  require to inversions 
and 

0 

3 
1 ( y 2 )  roil> <- (tot1) 

3 to(totl) t (to-1) to t . . . t 1. 2 = - 4 

multiplications. As d becomes large,  this step turns out to be the most lengthy, 
requiring as it does -d /24 multiplications. 

further ri) < d / 8  multiplications, and to memory registers.  

multipliers by am in the arithmetic unit. 

3 

Determination of Ge from these reduced equations involves, in the worst case, a 

As Chien31 has shown, finding the roots of u (X) is facilitated by use of the special 

2 

e 
If 

j=O 

mott-j 
Now e(t-j). then 1 is a root of ue(X). Let ut U e(t-j) = a 

-1 n-1 = a which w i l l  be zero when a 
be found with n multiplications by am, and stored in t memory registers.  

is a root of ue(X). All  e r r o r  locators can therefore 

Finally, we have only the problem of solving for s t t erasures.  We use (45), which 
Since requires the elementary symiiieti-ic functions of all erasure locators but one. 

1) - k c d ( k t  1)) 

- Yilud and find all we  can begin with koud(s-l) - 

cations and an inversion. Then the calculation of (45) requires 2(stt-1) multiplications 
and an inversion. Doing this s t t times, to rina ai l  e l a s u r ~  i - ~ k s s ,  +hQ-fnre reauires 
3(stt)(st t-1) multiplications and s t t inversions. Or we can alter s t t - 1 parity checks 
after finding the value of the first erasure,  and repeat with s' = s t t - 1 and so forth; 
under the assumption that all Yp are  readily available, this alternative requires only 

from the u with s - 1 multipli- 
koudk dk o s  

0 
Z(stt)(stt-1) multiplications and s t t inversions. 

a. Summary 

To summarize, there a re  for any kind of decoding two steps in which the number of 
computations is proportional to n. If we restrict  ourselves to correcting deletions only, 
then there  is no step in which the number of computations is proportional to more than 
d . Otherwise, reduction of the matrix M requires some computations that may be a s  2 
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3 large as d . If we a r e  doing general minimum-distance decoding, then we may have to 
repeat the computation d/2 times, which leads to a total number of computations propor- 

4 tional to d . As for memory, we also have two kinds: a buffer with length proportional 
to n, and a number of live registers proportional to  d2. In sum, if d = 6n, the total com- 
plixity of the decoder is proportional to nb, where b is some number of the order  of 3. 
All this suggests that if we are willing to use such a special-purpose computer as our 
decoder, or a specially programmed general-purpose machine, we can do quite powerful 
decoding without making the demands on this computer unreasonable. 

binary BCH code, using the Peterson33 algorithm. More recently, Zierler34 has studied 

the implementation of his algorithm for the (255,225) 15-error -correcting Reed-Solomon 
code on GF(256),both in a special-purpose and in a specially programmed small general- 

purpose computer, with results that verify the feasibility of such decoders. 

Bartee and Schneider3' built such a computer for  a (127,92) 5-error-correcting 

b. Modified Deletions-and-Errors Decoding 

If a code has minimum distance d,  up to so = d - 1 deletions may be corrected,  o r  

We have seen that while the number of computations in the up to to 
decoder was proportional to the cube of to, it is proportional only to  the square of so. 

It may then be practical to make the probability of symbol e r r o r  so  much lower than that 
of symbol deletion that the probability of decoding e r r o r  is negligibly affected when the 
decoder is set to correct  only up to t l  < to er rors .  Such a tactic we call modified 
deletions-and-errors decoding, and we  use it wherever we can in the computational 
program of Section VI. 

(d-1)/2 er rors .  

- 
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I V. EFFICIENCY AND COMPLEXITY 

We shall now collect our major theoretical results on concatenated codes. We find 
that by concatenating we can achieve exponential decrease of probability of e r r o r  with 
over-all block length, with only an algebraic increase in decoding complexity, for all 
ra tes  below capacity; on an ideal superchannel with a great many inputs, Reed-Solomon 
codes can match the performance specified by the coding theorem; and with two stages 
of concatenation we can get a nonzero e r r o r  exponent a t  all ra tes  below capacity, 
although this exponent wi l l  be less  than the unconcatenated exponent. 

5.1 ASYMPTOTIC COMPLEXITY AND PERFORMANCE 

, We have previously pointed out that the main difficulty with the coding theorem is the 
complexity of the decoding schemes required to achieve the performance that it predicts. 

The coding theorem establishes precise bounds on the probability of e r r o r  for block 
codes in t e rms  of the length N of the code and its rate R. 

i s ,  it is not precisely what an engineer would prefer, namely, the relationship between 
rate ,  probability of e r ro r ,  and complexity. 
such incommensurable quantities a s  cost, reliability, and delay, and often depending on 
details of implementation. 
than rough relationships in this area.  We shall investigate such relationships in the 
limit of very complex schemes and very low probabilities of e r ro r .  

We a r e  interested in schemes that have at least  two adjustable parameters, the 
rate R and some characteristic length L, which for block codes wi l l  be proportional to 
the block length. We shall assume that the complexity of a scheme depends primarily 
on L. A s  L becomes large, a single te rm will always dominate the complexity. 
case in which the complexity is proportional to some algebraic function of L, o r  in which 
different par ts  of the complexity a r e  proportional to algebraic functions of L, that part 
of the complexity which is proportional to the largest power of L, say La, w i l l  be the 
dominant contributor to the complexity when L is large, and we shall say the complexity 
is & c L i ~ i ~  iz L, c r  ye?nrtional to L. In the case in which some part of the complexity 
is proportional to the exponential of an algebraic function of L, this part becomes pre- 

dominant when L is large (since ex = 1 t x t x / 2 !  t . . . > x , x -. m), and we say the 
complexity is exponential in L. 

Informative a s  this theorem 

Now complexity is a vague term, subsuming 

Therefore we should not expect to be able to discover more 

in the 

2 a 

Similarly, the probability of e r r o r  might be either algebraic o r  exponential in L, 
though normally it is exponentially small. Since what we a r e  really interested in is the 
relationship between probability of e r ro r  and complexity for a given rate, we can elim- 
inate L from these two relationships in this way: i f  complexity is algebraic in L while 
P r (e )  is exponential in L, Pr (e)  is exponential in complexity, while i f  both complexity 
and Pr(e) a r e  exponential in L, Pr(e)  is only algebraic in complexity. 

of length N to achieve e r r o r  probability Pr(e) S e -NE(R). 

For  example, the coding theorem uses maximum-likelihood decoding of block codes 
Maximum-likelihood decoding 
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involves eNR comparisons, so  that the complexity is also exponential in N. 

Pr (e )  is only algebraic in the complexity; in fact, i f  we let G be proportional to the com- 

plexity, G = eNR, (In G)/R = N, Pr(e)  s e 

noted, this relatively weak dependence of Pr(e)  on the complexity has retarded practical 
application of the coding theorem. 

Sequential decoding of convolutional codes has attracted interest because it can be 
shown that for ra tes  less  than a critical rate Rcomp < C, the average number of com- 
putations is bounded, while the probability of e r r o r  approaches zero. 
bility of this approach is that the number of computations needed to decode a given 
symbol is a random variable, and that therefore a buffer of length L must be provided 
to store incoming signals while the occasional long computation proceeds. 
has shown that the probability of overflow of this buffer, for  a given speed of computa- 
tion, is proportional to L-', where a is not large. 
buffer overflow is equivalent to system failure; thus the probability of such failure is 
only algebraically dependent upon the length of the buffer and hence on complexity. 

but i t  has no asymptotic performance. A s  we have seen, BCH codes a r e  subject to the 
same asymptotic deficiency. 
achieves arbitrarily low probability of e r r o r  at  a finite rate is Elias' scheme of iterating 
codes36; but this rate is low. 

Ziv37 has shown that by a three-stage concatenated code over a memoryless channel, 

Therefore, 

E(R) E(R) -(ln G)R - 
= G . As we have previously 

The critical lia- 

35 Recent work 

In the absence of a feedback channel, 

Threshold decoding is another simple scheme for decoding short convolutional codes, 

The only purely algebraic code discovered thus far  that 

a probability of e r r o r  bounded by 

5 -L * Pr(e)  S K 

can be achieved, where L is the total block length, while the number of computations 
required is proportional to La.  
the original channel, although a s  R - C,  a - co. 

In the sequel we shall show that by concatenating an arbitrari ly large number of 
stages of RS codes with suitably chosen parameters on a memoryless channel, the over- 
all probability of e r r o r  can be bounded by 

H i s  result holds for  all  ra tes  less  than the capacity of 

$-A) 
Pr(e)  po , 

where L is proportional to the total block length, and A is a s  small  a s  desired, but posi- 
tive. At the same time, i f  the complexity of the decoder for an RS code of length n is 
proportional to nb, say, the complexity of the entire decoder is proportional to Lb. F rom 
the discussion in Section IV, we know that b is approximately 3 .  This result w i l l  obtain 
for all rates less  than capacity. 

of length n and dimensionless ra te  (1-2p) can correct up to np e r r o r s ,  on a superchannel 
We need a few lemmas to s tar t .  Firs t ,  we observe that since a Reed-Solomon code 
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with probability of e r r o r  p, 

Here, we have used a union bound and 

This is a very weak bound, but enough to show that the probability of e r r o r  could be made 
to decrease exponentially with n for any p such that -p log p - X(p) > 0 if  it were pos- 
sible to construct an arbitrari ly long Reed-Solomon code. In fact, however, i f  there a r e  
q inputs to the superchannel, with q a prime power, n S q - 1. 
prime power requirement and the 'minus one' as trivial. 

We shall ignore the 

It is easily verified that for p S 1/2, 

Therefor e 

1 - 
Now we can show that when (-ln p) S (2a)a-', 

(47) 

(4 8) 

1 - 
a a- 1 2ax S x when x 3 ( Z a j  

which proves Eq. 48. 

fied. 

any p < 1, a > 1.) 

We note that when p S l /e2,  a 3 4, this condition is always satis- 
(In fact, by changing the base of the logarithm, we can prove a similar lemma for 

Finally, when x > y > 0, and a > 1, 

(X-y)a = ..(1 -(;I) > .a(1 -t). 2 ( l  -;J = xa - ya. (4 9) 

We a r e  now ready to construct our many-stage concatenated code. Suppose by some 
block-coding scheme o r  otherwise w e  have achieved a superchannel with N inputs and 
outputs and a probability of e r r o r  

1 
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Pr(e)  S po = e -E, E >  1 (50) 

We now apply to this superchannel an RS code of dimensionless rate (1-2p) and length N1, 
achieving a probability of e r r o r ,  from (46), of 

-N1 [BE -X(P) 1 -E 1 Pr l ( e )  S e = e  . 
Assume PE - X(p) > 0, and define a to satisfy 

N1[pE-X(p)] = El Ea; 

thus 

We assume that 

2 p c l /e 

and 

4 G a S N1(1-2p),  

(52) 

(53) 

and we shall prove the theorem only for these conditions. 
N1(1-2P) 

inputs and 
1 This f i rs t  concatenation creates a new superchannel with N 

outputs and Pr(e) S exp -E1. 
length N2 = NY and dimensionless rate (1-2pa). 
guaranteed by the condition of Eq. 53 that a S N 1  (1-28) .) For this code, 

Apply a second RS code to this new superchannel of 
(That a code of this length exists is 

But now 

= E;. (55) 

Here, we have used the inequalities of (48) and (49). 

Thus by this second concatenation we achieve a code which, in t e rms  of trans- 
missions over the original superchannel, has length N N = N;", dimensionless 

1 2  
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2 
rate (1-2p)(1-2pa), and Pr(e)  S exp-Ea . 

2 Obviously, if p S l /e2,  then pa S l/e , and if a =z N1(1-2p), then a C N2(1-2pa), 
Therefore if we continue with any number of concatenations in this way, (53) remains 
satisfied, and relations like Eq. 55 obtain between any two successive exponents. After, ( an-1) n such concatenations, we have a code of dimensionless ra te  (1-2p)(1-2pa) . . . 1-28 8 

-n-1 
n a 

a length L = N:-', and Pr (e)  G exp-E . Now, for a 2 2 ,  p < 1/2, 

(1-2p)(1-2pa). . . (1-2pan-l) 3 ( l -Zp) ( l - zp  2 ) . . . ( 1-2p 2,-1) 

= 1 - 2 p - 2 p  2 t 4 p  3 - 2 p  4 +.. .  
2 4 3 1 - 2 p - 4 p  - 8 p 3 - 1 6 p  -... 

1 1 - 4 p  

= - Z B ( W )  =-. 

Also, 

n I n L  n- 1 a In N~ = ~n L, a = 1 t (a-1)- a-1 In N1 

so that 

In L I n E  

L ( 1 - 4  - 
(a-1) - 

- L In N1 n 
-E - E 

- Po - p9 = e  Prie)  S e 9 
-Ea 

(57) 

by substitution for  a, where A is defined by 

Since BE - X(p) is assumed positive, but p < 1, A is positive. 
We now construct a concatenated code of rate R' >, C(1-E) for a memorvless channel 

1 - 2p 

1 - 4 8  
' - E  

Z ( l t 6 - E )  
so  that -R = with e r r o r  exponent E(R) . Choose R = (1-6)C > R' and p = 

C(1-E). 

exp -NE(R). Now we can apply the concatenation scheme already described with 
N1 = expNR, E = NE(R), as long a s  

We know there is some block code of length N and rate R such that Pr (e)  S 

It is obvious that there is an N large enough so that this is true. Using this N, we 
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1 - 2 p  
achieve a scheme with rate  greater than o r  equal to - 4p R = C( 1 - E )  and with probabil- 
ity of e r ror  

Clearly, as long as E(R) > 0, A can be made a s  small  a s  desired by letting N be suf- 
ficiently large. It remains positive, however, so that the e r r o r  exponent E defined by 

1 
L E E lim - - log P r (e )  

L-cO 

appears to go to zero, i f  this bound is tight. 
That E must be zero when an arbitrari ly large number of minimum-distance codes 

a r e  concatenated can be shown by the following simple lower bound. Suppose a code of 
length N can correct up to Np e r rors ;  since the minimum distance cannot exceed N, 
p S 1/2. 

certainly be made i f  the first Np symbols a r e  in e r r o r ,  so that 
Then on a channel with symbol probability of e r r o r  p, a decoding e r r o r  wi l l  

Pr(e)  3 p NP . 
Concatenating a large number of such codes, we obtain 

(N1N2. .)(PlP2. * .) 
Pr(e)  3 Po 

Now N l N 2 . .  . - - L, the total block length, so that 

1 
E = lim --log L Pr(e) < (-logPo) lim(p1p2.. .) = 0, 

L-00 

because pi < 1/2. Since E cannot be less  than zero, it must actually be zero. 
words, by concatenating an infinite number of RS codes, we can approach a s  close to a 
nonzero e r ror  exponent a s  we wish, for any rate l e s s  than capacity, but we can never 
actually get one. 

In other 

As w a s  shown in Section 111, decoding up to t e r r o r s  with an RS code requires a num- 

We require only that the complexity of a decoder 3 ber  of computations proportional to t . 
which can correct up to Np e r r o r s  be algebraic in N, o r  proportional to Nb, although in 
fact it appears that b - 3 .  After going to n stages of concatenation according to the 

scheme above, the outermost decoder must correct  (N,  p)a 
n- 1 

e r r o r s ,  the next outer- 
1 -  n-2 

most (N1pIa , and SO forth. But in each complete block, the outermost decoder need 

56 



n- 1 
only compute once, while the next outermost decoder must compute NY 

next outermost ~f 
is proportional to 

times, the 
n-1 n-2 

times, and so forth. Hence the total number of computations N; 

b 

G - [ (N P) t Na ln-l[ (N P)a n-21 t NP-lta"-Z[oa"-31-1tan-2[(NlP)an-I t . . . 
n-1 tban-2 n- 1 n-2 tban-3 t a  t Nf t N; t ... . ,< N1 ban-' 

Since ba 2 b t a, a 2 2, b 2 2, the first term in this ser ies  is dominant. Finally, since 
n- 1 

N; < L, 

G 2 Lb. 

Thus the number of 
plexity of the hardware 

computations can increase only a s  a small power of L. The com- 

required to implement these computations is also increasing, but 
generally only in proportion to a power of log L. 

sa ry  to concatenate a large number of codes, a s  two stages generally suffice. It does 
indicate that concatenation is a powerful tool for getting exponentially small  probabilities 
of e r r o r  without an exponentially large decoder. 

This result  is not to be taken as a guide to design; in practice one finds it unnecces- 

5.2 CODING THEOREM FOR IDEAL SUPERCHANNELS 

We recall  that an ideal superchannel is the q-input, q-output memoryless channel 
which is symmetric from the input and the output and has equiprobable e r ro r s .  If its 
total probability of e r r o r  is p, its transition probability matrix is 

We shall  now calculate the unexpurgated part of the coding theorem bound for this 
channel, in the limit as q becomes very large. The result wi l l  tell us  how well we can 
hope to do with any code when we assume we a re  dealing with an ideal superchannel. 
Then we shall find that over an interesting range Reed-Solomon codes a re  capable of 
achieving this standard. Finally, we shall use these results to compute performance 
bounds for  concatenated codes. 

Specialized to a symmetric discrete memoryless channel, the coding theorem asser t s  
that there  exists a code of length n and rate R which with maximum-likelihood decoding 
wi l l  yield a probability of e r r o r  bounded by 

-nE (R) Pr(e) G e s 
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where 

and 

Substituting Eq. 59 in Eq. 61, we obtain for  the ideal superchannel 

To facilitate handling Eq. 62 when q becomes large, we substitute p1 = p ln q and 
the dimensionless rate r = R/ln q; then 

(63) Pr(e)  < e -nE(r). 

O<p'anq 
E(r)  max {E;(pl)-ptr} 

I I 

We consider f i r s t  the case in which p is fixed, while q becomes very large. For p'  > 0, 
EL( p')  becomes 

= p l  - In [ ( l -p) tpe~ ' ] .  

In the maximization of E ( r ) ,  p t  can now be a s  large as desired, so that the curved, 
unexpurgated part of the coding theorem bound is the entire bound; by setting the deriv- 
ative of E(r)  to zero, we obtain 

o r  
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Thus, 

1 - P  1 - r  1 - P  
E(r )  = (1-r) In-----In- P r r 

= - r In (1-p) - (I-r)  In p - X(r). 

This bound wi l l  be recognized a s  equal to L e  Chernoff bound - to the probability of 
getting greater than n(1-r) e r r o r s  in n transmissions, when the probability of e r r o r  on 
any transmission is p. It suggests that a maximum-likelihood decoder for a good code 
corrects all patterns of n(1-r) o r  fewer errors .  

On the other hand, a code capable of correcting all  patterns of n(1-r) o r  fewer e r r o r s  
must have minimum distance 2n(l-r), thus at least  Zn(1-r) check symbols, and dimen- 
sionless rate r' = 1 - 2(1-r) < r. No code of dimensionless rate r can correct all pat- 
terns  of n(1-r) o r  fewer e r rors .  What must happen is that a good code corrects the great 
majority of e r r o r  patterns beyond its minimum distance, out to n(1-r) e r rors .  

We shall show that on an ideal superchannel with q very large, Reed-Solomon codes 
do just about this, and come arbitrarily close to matching the performance of the coding 
theorem. 

length N and rate R over a raw channel with e r r o r  exponent E(R); then with eNR inputs 
we have Pr(e)  S e -NE(R). 

One way of approximating an ideal superchannel is to use a block code and decoder of 

We a re  thus interested in the case in which 

NR q = e  

and 

-NE p = e  . 
Substituting Eqs. 65 in Eqs. 63, and using p' = p In q = pNR, we obtain 

-nE (r) Pr (e )  S e 

When N becomes large, one o r  the other of the two te rms  within the brackets in this last  
equation dominates, and E (p)  becomes 

0 

pNR, pNR S NE 

NE, N E S  pNR, 
E o ( P )  = 

o r  

 eo(^) = N min{pR,E}. 
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The maximization of E(r)  in (66) is achieved by setting p = E/R if E/R S 1, and P = 1 

otherwise. Thus 

NE(1-r) E G R  

NR( 1 -r) E > R  
E(r)  = 

o r  

E(r)  = N(1-r) min (E,R}. 

In the next section we shall only be interested in the case E e R, which corresponds to 
the curved portion of the bound, for which we have 

-nNE (1 -r) Pr(e) G e (6  9) 

5.3 PERFORMANCE OF RS CODES ON THE IDEAL SUPERCHANNEL 

We shall show that on an ideal superchannel (which suits RS codes perfectly), RS 
codes a re  capable of matching arbitrari ly closely the coding theorem bounds, Eqs. 51 
and 69, a s  long as q is sufficiently large. From these results we infer that RS codes 
a r e  a s  good as any whenever we a r e  content to t reat  the superchannel as ideal. 

a. Maximum-Likelihood Decoding 

We shall first investigate the performance of RS codes on a superchannel with large 
q and fixed p, for  which we have shown (Eq. 51) that there exists a code with 

It wi l l  be stated precisely in the following theorem. 
THEOREM: For any r > 1/2, any 6 such that 1/4 > 6 > 0,  and any p such that 

1/4 > p > 0,  there exists a number Q such that for all  ideal superchannels with proba- 
bility of e r r o r  p and q Q inputs, use of a Reed-Solomon code of length n G q - 1 and 
dimensionless rate r with maximum-likelihood decoding wi l l  result in a probability of 
e r r o r  bounded by 

PROOF: Let Pi be the probability that a decoding e r r o r  is made, given i symbol 
e r rors .  Then 

~ 

i= 0 

The idea of the proof is to find a bound for  P. which is l e s s  than one for i S t ,  and then 
to split this ser ies  into two parts, 

1 
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i= 0 i= t t l  

I in which, because Pi falls off rapidly with decreasing i ,  the dominating te rm in the first 
ser ies  is the last, while that in the second ser ies  is the first .  

We first  bound Pi for i S d - 1. Consider a single code word of weight w. By 
changing any k of its nonzero elements to zeros, any m of its nonzero elements to any 
of the other (q-2) nonzero field elements, and any 1 of its zero elements to any of the 
(q-1) nonzero field elements, w e  create a word of weight i = w t 1 - k, and a t  distance 
j = k t 1 t m from the code word. The total number of words that can be so formed is 

I 

I 

Here, the notation ( kym) indicates the trinomial coefficient 

W !  

k! m! (w-m-k) ! 

I 
~ 

I 

which is the total number of ways a set containing w elements can be separated into sub- 
~ 

sets  of k, m, and (w-m-k) elements. 
distance j from some code word is then upperbounded by 

The total number, N, of words of weight i and 
I 

i= w +k-k 
j = k t  1-m 

where Nw is the total number of code words of weight w. The reason that this is an 
upper bound is that some words of weight i may be distance j from two o r  more code 
words. 

- r r -  Le--- .* & ..-. ~ + Y U ~  !see Section 111) that for a Reed-Solomon code, 

Substituting this expression in (71) and letting k = j - 1 - m,  w = i t j - m - 21, we 
obtain 

i + j - m - 2 k  n - i - j t m t 2 8  itj-m-Q-dt 1 
j - i - m , m  L 

itj-m-1-dtl n! (q-2)m (q-1) = c  c m! B !  (j-1-m) ! (i-Q-m) ! (n-i-jtm+L) ! m a 0  QaO 
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A more precise specification of the ranges of m and 1 is not necessary for  our 
purposes. 

th The ratio of the (ltl)th to the 1 term in this ser ies ,  for a given m, 

(q-1l-l (j-1-m) (i-1-m) 
( l t l )  (n- i - j tmt l t l )  

is upperbounded by 

2 2 2 
(d-1)' (q-l)-' n (1-r) (1 -r) 

( l t l )  [n-Z(d-l)] ( a t l )  (q-1) n(2r-1) ( l t l)  (Zr-1) 

Here, we haveused r>1 /2 ,  j S i G d - l = n ( l - r ) ,  1 2 0 ,  m 2 0 ,  and n S q - 1 .  Defining 

2 

c r- 1 Z r - 1 '  
(1-r) 

we have 

m i t j  -m-d t 1 
(q- 

m! (j-m) ! (i-m) ! (n-i-jtm) ! Pa0 

N . .  C 
1J 

ma0 

itj-m-dt 1 
= e  

m!  (j-m) ! (i-m) ! (n-i-jtm) ! ma0 

Similarly, the ratio of the (mt l ) th  to the mth te rm in the ser ies  of ( 7 3 ) ,  

(q-1) ( m t l )  (n-i-j tmtl)  ' 

is upperbounded by 

nC 1 (d- 1) 
- -- 

( m t l )  [n-Z(d-l)] ( m t l )  

so that 

Since the total number of i-weight words is 
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the probability that a randomly chosen word of weight i will  be distance j from some 
code word is bounded by 

C1 jt l-d e , 

and the total probability Pi that a word of weight i wi l l  be distance j < i from some code 
word is bounded by 

Cl (n t l )  1 (n-i) ! (q-1) j t l -d  
Pi < e 

j ! (n-i-j) ! j C i  

or, if  we substitute j t  = i - j ,  

i-j t 1 -d C1(ntl)  2 (n-i) ! (q-1) 
Pi ,< e 

(i-jl) ! (n-2itj1) ! jl30 

The ratio of the ( j8 t l ) th  to the jIth te rm in the ser ies  of (75), 

(i-jl) 

is upperbounded by 

( 1 -r) - - d ,- 1 c2 = 
(q-1) [n-Z(d-l)] (q-1) (2r-1) 

, 

so that 

it 1 -d C1 (n t l )  (n-i) ! (q-1) . I  

Pi ,< e i! (n-2i) ! 1 CJZ. 
jl>,O 

If 

(1-r) 
q - 1 3 2 -  2 r  - 1 

so that C2 ,< 1/2, 

Substituting (77) in (70), w e  obtain 
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We let  

so that t = n(1-r-E). 
e r r o r s  occur, which is Chernoff-bounded by 

The second ser ies  of (78) is just the probability that more than t 

(If E < 6, 1 - r - E > 1/4 > p.) Setting it = t - i, we write the f i rs t  se r ies  of (78) as 

t t  1 -d-i' t-it n-tti' 
( n! (q-1) P 

S1 2e 
i ' 2 0  

The ratio of the ( i l t l ) t h  to the itth te rm in the ser ies  of Eq. 80, 

2 (1-p) (t-it) 
p(q-1) (n-2tt2ili-1) (n-2tt2iIt2) ' 

is upperbounded by 

( 1 -P) ( 1 -I-) - (1-PI (d-1I2 
cg =- 

p(q-1) [n-2(d-1)I2 - p(q-l)(Zr-l)' ' 

so that 

t t l -d  t 
C1(ntl)  n! (q-1) P (l-P)n-t - S1 S 2e 

i '20  t! t! (n-2t) I 

i f  

2 

2 '  

1 - p (1-r) 

P (2r-1) 
q-1 2 2- 

so that C3 S 1/2, 

t t l -d  t 
C1(ntl) n! (q-1) p (l-P)n-t 

S1 S 4e 
t! t l  (n-Zt)! 

Substituting Pt from (77) in (82), we obtain 
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I , 
i 

I 

I 
I 

i 

I 

I 

I 

s1 S ZPt(;) pt(l-p)"-t. 

Substituting (83) in (78), with the use of 

we have 

Choose 

Finally, for this choice of E ,  from (77), 

n[c t 1 - E In (q-1) I t [cl t In 21 
==e 

in which we have used d - 1 - t = ne and 

Thus Pt C 1 i f  

r ci + I n 2 1  

n J  '1 In (q-1) "7 C1 t 1 t 

In (1-p) - In p 
>, 6 [ZC1 t 1 t 1n2], 

in which we have used n 2  1 and substituted for  E by Eq. 84. Defining Cq r 2C1 + 1 -In 2, 

(84) can be written 

When this is satisfied, 

P r (e )  S 3e -n[-( l - r ) Inp-r ln( l -p)  -3C(r) - 6 1  

6 5  



a s  was  to be proved. 
fied, which is to say if  q - 1 > Q, with 

Equation 88 holds if (76),  (81) ,  and (87) a r e  simultaneously sat is-  

Q. E. D. 
NR , From this result we can derive a corollary that applies to the case in which q = e 

-NE 
p = e , fo r  which we have found the coding theorem bound, when E < R (Eq. 691, 

-nNE( 1 -r) PI'(€) S e 

COROLLARY: For E < R,  r > 1/2, and any 6' > 0, there exists an N such that for  
0 

all N 3 No, use of a Reed-Solomon code of dimensionless rate r and length n C q - 1 

with maximum-likelihood decoding on an ideal superchannel with probability of e r r o r  
p = e-NE and q = eNR inputs wi l l  yield an over-all probability of e r r o r  bounded by 

-nN [E ( 1 -r) -6' ] P r ( E )  S 3e 

Proof: The proof follows immediately from the previous theorem if we let  6 = 
Nb' - X(r), which will  be positive for 

For then, since -r In (1-p) 3 0, 

(91) 
-n( 1 -r)NEtnNd' Pr(e) ,< 3e 

which w a s  to be proved. Equation 91 holds if Eq. 90 holds and if, by substituting in 
Eq. 89, 

r 
t " 

The first condition of (92) is satisfied if  

1 1 - r  N a-lnZ-. R Z r - 1 '  

the second, i f  

( 1 -r) 

(2r-1) 

c4 7 
(92) 

(93) 

(94) 

in which we have used 1 - e -NE G 1.  Equation 94 can be rewritten 
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Here, we assume R > E. 
The third condition of (92) is satisfied if  

N R a N E [  c4 1, 
N6' - X(r) 

which can be rewritten 

E C ~ / R  t X(r) 
6' N > ,  

(96) 

(97) 

Equations 90, 93, 95, and 97 wil l  be simultaneously satisfied i f  N 3 N where 
0' 

Q. E. D. 

This result  then provides something for communication theory which w a s  lacking pre- 
viously: a limited variety of combinations of very long codes and channels which approx- 
imate the performance promised by the coding theorem. 

For  our present interest, this result tells us  that once we have decided to concatenate 
and to t reat  e r r o r s  in the superchannel a s  equiprobable, a Reed-Solomon code is entirely 
satisfactory as an outer code. 
ance, it is because we choose to use minimum-distance rather than maximum-likelihood 
de coding. 

If we fail to meet coding-theorem standards of perform- 

b. Minimum-Distance Decoding 

If we use minimum-distance decoding, decoding e r r o r s  occur when there a re  d/2 = 
n( l-r)/2 o r  more symbol e r ro r s ,  so by the Chernoff bound 

One way of interpreting this is that we need twice as much redundancy for minimum- 
distance decoding as for maximum-likelihood decoding. 
less  ra te  r ,  we suffer a loss of a factor K in the e r r o r  exponent, where K goes to 2 when 
p is very small ,  and is greater than 2 otherwise. 
E C R, the loss in the exponent is exactly a factor of two, for (98) becomes 

Or,  for a particular dimension- 

-NE Indeed, when q = eNR, p = e , and 

-nNE( l-r) /2  Pr(e) d e 
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5 . 4  EFFICIENCY OF TWO-STAGE CONCATENATION 

By the coding theorem, we know that for  any memoryless channel there is a code of 
where E(R') is the e r r o r  exponent of 

We shall now show that over this same channel there exists an inner code 

length N' and rate R '  such that P r (e )  s e 

the channel. 
of length N and rate R and an outer code of length n and dimensionless rate r, with 

nN = N' and r R  = R', which when concatenated yield Pr(e)  G e 

efficiency q ( R ' )  

efficiency indicates how much greater the over-all length of the concatenated code must 
be than that of a single code to achieve the same performance, and thereby measures 
the sacrifice involved in going to concatenation. 

-N'EC(R') . We define the 

EC(R')/E(R'); then, to the accuracy of the bound, the reciprocal of the 

For the moment, we consider only the unexpurgated part of the coding-theorem 
bound, both for the r aw channel and for the superchannel, and we assume that the inner 
decoder forwards no reliability information with its choice. Then there exists a code 
of length N and rate R for the raw channel such that the superchannel wi l l  have e 
inputs, eNR outputs, and a transition probability matrix p.. for which 

NR 

31 

i j S i  

Applying the unexpurgated part of the coding theorem bound5 to this superchannel, 
we can assert the existence of a code of length n and dimensionless rate r (thus 
rate r In (eNR) = r N R )  which satisfies 

-nE(r, p..) 
Pr (e )  G e 31 

where 

m ax 
A 

E(r ,  p . . )  3 P {Ep($, pji)-prNR} 
J1 OCpSl  

and 

We cannot proceed with the computation, since we know no more about the matrix p.. 
31 

than is implied by Eq. 99. We shall now show, however, that of all transition probabil- 
ity matrices satisfying ( 9 9 ) ,  none has smaller E(r,  p . . )  than the matrix F.. defined by 

31 J1 

i =  j 

-NE( R )  

pJi = k eNR - 1 

N 

i f  j 
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which is the transition probability matrix of the ideal superchannel with eNR inputs, and 
P r (e )  = e NE(R). In this sense, the ideal superchannel is quite the opposite of ideal. (In 
a sense, for a fixed over-all probability of symbol e r ror ,  the ideal superchannel is the 
minimax strategy of nature, while the assumption of an ideal superchannel is the corre- 
sponding minimax strategy for the engineer.) 

- 

A 

Firs t ,  we need the following lemma, which proves the convexity of E (P ,  

LEMMA: If p.. and q.. a r e  two probability matrices of the same dimensionality, for  

) over the 
P 

convex space of all transition probability matrices. 

31 31 
O S A S l ,  

PROOF: The left-hand side of the inequality is 

1 +P 

AEp(P, pji) t (1-A) Ep(P,  q..) = -A In 
J1 

-In L, 

while the right is 

But 

where the f i rs t  inequality is that between the arithmetic and geometric means, and the 
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I 

second is Minkowski's inequality, which is valid because 0 C l / l t p  S 1. 

-In L 3 -In R,  so  the lemma is proved. 
But i f  L 6 R, 

A A- From this lemma one can deduce by induction that E (P, p. . )  3 E (P, p..),  where the 
P J 1  P J l  

bar  indicates an average over any ensemble of transition probability matrices. 
desired theorem follows. 

The 

THEOREM: If e-NR z z p.. = K 6 e -NE(R), then 
i j#i J1 

E ( r ,  p. .)  2E( r ,F . . ) ,  
J' J1 

where 

, all i 
N -NE (R) pii = 1 - e 

-NE( R )  

eNR - 1 ' 

- e  i # j .  Pji - 

A 
PROOF: Let e-NR be the particular assignment P in which Pi = e-NR, all i, which 

because of its symmetry is clearly the optimum assignment for the ideal superchannel. 
Then 

d 

2 E (e-"',p..) - prNR,  O C p - ( l  
P J1 

Suppose we permute the inputs and outputs so that the one-to-one correspondence between 

them is maintained, thereby getting a new matrix P I ,  for which evidently E 
P 

. Averaging over the ensemble of all (eNR)! such permutations, and noting 
that 

- 
pii = 1 - K, all i 

i #  j ,  - K - 
Pji - 

eNR - 1 ' 

we have 

d d 
- Obviously, E P (e-NR, si) 6 E P (e-NR , pji). - since K s e NE(R), so that finally 
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. 

In Section I1 we computed the e r r o r  exponent for this case, and found that 

where 

E*(r, R) = (1-r) min {R, E(R)}. (100) 
* 

To get the tightest bound for a fixed over-all rate R ' ,  we  maximize E (r, R) subject 
to the constraint r R  = R'. 

we never want R C RE, so that E (R')  can be expressed 
Let us  define RE to be the R satisfying RE = E(RE); clearly, 

C 

EC(R') = max E(R)( l - r ) .  
rR=R' 
R3RE 

The computational results of Section VI suggest that the r and R maximizing this 
expression a re  good approximations to the rates that a r e  best used in the concatenation 
of BCH codes. 

Geometrically, we can visualize how EC(R') is related to E ( R )  in the following way 
(see Fig. 9). Consider Eq. 100 in terms of R'  for a fixed R: 

This is a linear function of R' which equals zero at R' = R and equals min (R, E(R)) at 
R '  = 0. In Fig. 9 we have sketched this function for R = R1, R2, and R3 greater than 
RE, for RE, and for  R4 less  than RE. 

of all these funzticns. 
E (R') may be visualized a s  the upper envelope 

A s  R'  goes to zero, the maximization of (101) is achieved by R = RE, r - 0, so that 

C 

EC(0) = E ( R  ) = RE. E 

Since the E ( R )  curve l ies between the two straight lines L1 = E(0) and L2 = E(0)  - R, we 
have 

E(0) > E(RE) 3 E(0) - KE 

or  
1 E(0) 2 E(RC) a ~ E ( 0 ) .  

The efficiencyq(0) = EC(0)/E(O) is therefore between one-half and one at R'  = 0. 

the efficiency approaches zero. For ,  let  E(R) = K(C-R) near capacity, which is the 
normal case (and is not essential to the argument). 
mum of (101) occurs at R = C(1-2~/3) ,  where EC(R) = 4~ KC /27 > 0. 

4€/27, so that the efficiency goes to zero as R'  goes to C. 
tional to  (l-R'/C), however, which indicates that the drop-off is not precipitous. 

A s  R'  goes to the capacity C, E (R')  remains greater  than zero for all R' C C. but 
2 C 

Let R'  = C ( ~ - E ) ,  E > 0; the maxi- 
Hence q(R ' )  = 3 2  

The efficiency is propor- 
Most 
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x E.' ( R ' I  \ 

Fig. 9. Derivation of EC(R') from ECR'. 

important, this makes the coding theorem so provocative that exponential decrease in 
P r (e )  at all rates below capacity is preserved. 

We know from the previous discussion that over that part of the curved segment of 
EC(R') for which r > 1/2, which wi l l  normally be [when E(RE) is on the straight-line seg- 
ment of E(R)] the entire curved segment, Reed-Solomon codes a re  capable of achieving 
the e r r o r  exponent E ( R ' )  i f  we use maximum-likelihood decoding. 
distance decoding, then we can achieve only 

If we use minimum- C 

-nNEm( R')  
Pr (e )  d e # 

where 

E,(R') = max E(R)(l-r)/2.  
r R =  R '  

Over the curved segment .of E (R), therefore, E,(R') is one-half of EC(R'); below C 
this segment E,(R') wi l l  be greater  than E (R ' ) /2 ,  and, in fact, for R '  = 0 C 

which wi l l  normally equal EC(0). 

factor of one-half o r  better in efficiency, but, given the large sacrifice in efficiency 
already made in going to concatenated codes, this further sacrifice seems a small  
enough price to pay for the great simplicity of minimum-distance decoding. 

Thus minimum-distance decoding costs US a further 
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0.20 

MINIMUM-DISTANCE 
EXPONENT EXPONENT 

0.2 0.4 0.6 0.8 0.92 
RATE ( I N  BITS ) 

0.5 0.42 0.31 0.22 0.15 0.10 0.068 0.043 0.022 
EFFICIENCY (EC ( R )  / E ( R )  

Fig. 10. E(R) curve for original channel. 

In Fig. 10 we plot the concatenated exponent EC(R'), the minimum-distance expo- 
nent E 

crossover probability . 01. 

of capacity, which indicates that concatenated codes must be from 2 to 50 times longer 
than unconcatenated. 
the concatenation of BCH codes. 

(K'), and the original e r r o r  e i i ~ ~ n e n t  E ( R ' )  of a binary symmetric channel with m 
The efficiency ranges from 1/2 to approximately . 0 2  at 9/10 

We shall find that these efficiencies a r e  roughly those obtained in 

It is clear that in going to a great number of stages, the e r r o r  exponent approaches 

We have not considered the expurgated part of the coding-theorem bound for two 
zero everywnere, ab wc w v U X  z+::?.. 

reasons: f i rs t ,  we a r e  usually not interested in concatenating unless we want to signal 
at high rates,  for which complex schemes are required; second, a lemma for the expur- 
gated bound similar to our ear l ier  lemma is lacking, so that we a r e  not sure  the ideal 
superchannel is the worst of all possible channels for this range. Assuming such a 
lemma, w e  then find nothing essentially new in this range; in particular, q(0) remains 
equal to 1/2. 

Since all deletions a re  equivalent, we lump them into a single output, so that now 
the superchannel has eNR inputs and 1 t eNR outputs. Let the e r r o r  probability 
fo r  the superchannel be e -NE and the deletion probability e-m; assuming the ideal 

Finally, let us  suppose that the inner decoder has the option of making deletions. 
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superchannel with deletions again the worst, we have 

-nE( r)  P r (e )  4 e 

where 
2 

E(r )  = max E (P) - p N R r  
A P  

P I  P 

= max E (eeNR) - p r N R  
O < p S l  

and 

J 

A s  N - 00, Ep(e-NR) - min (E, D, pR) .  But, by adding deletion capability, we can only 
increase the probability of getting either a deletion o r  an e r ror ,  so  that 

e -NE(R)., .-NE + ,-ND 

and thus min (D, E )  3 E(R), so that 

Thus a deletion capability cannot improve the concatenation exponent EC( R' ), although 
it can, of course, bring the minimum-distance exponent Em(R') closer to EC(R'), and 
thereby lessen the necessary block length by a factor less  than two. 



VI. COMPUTATIONAL PROGRAM 

The theoretical results that we have obtained a re  suggestive; however, what we 
really want to  know is how best to  design a communication system to meet a specified 
standard of performance. The difficulty of establishing meaningful measures of com- 
plexity forces us to  the computational program described here. 

6.1 CODING FOR DISCRETE MEMORYLESS CHANNELS 

We first investigate the problem of coding for a memoryless channel for which the 
modulation and demodulation have already been specified, so  that what we see is a chan- 
nel with q inputs, q outputs, and probability of e r r o r  p. 
all rate Rl and over-all probability of decoding e r r o r  Pr (e) ,  we  set  ourselves the task 
of constructing a list of different coding schemes with rate R' and probability of decoding 
e r r o r  upperbounded by Pr(e). 

If we a r e  given a desired over- 

The types of coding schemes which we contemplate a r e  the following. We could use 
a single BCH code on GF(q) with errors-only minimum-distance decoding. Or ,  we could 
concatenate an RS outer code in any convenient field with an inner BCH code. In the latter 
case,  the RS decoder could be set  for errors-only or  modified deletions-and-errors 

decoding (cf. sec. 4. 6b); we do not consider generalized minimum-distance decoding, 
because of the difficulty of getting the appropriate probability bounds. If the outer decoder 
is set  for errors-only decoding, the inner decoder is se t  to correct as many e r ro r s  as it 
can, and any uncorrected word is treated by the outer decoder as an e r ror .  If the outer 
decoder can correct deletions, however, the inner decoder is set  to correct only up to  
t ,  e r r o r s ,  where t and uncor- 
rected words a r e  treated by the outer decoder as deletions. 

Formulas for computing the various probabilities involved a r e  derived and discussed 
in Appendix B. In general, we a r e  successful in finding formulas that a r e  both valid upper 
bounds and good approximations to the exact probabilities required. 
is the formula for  computing the probability of undetected e r r o r  in the inner decoder, 
when the inner decoder has the option of deletions, where the lack of good bounds on the 
distribution of weights in BCH codes causes us  to settle tor a vaiia upper UWUIIL;, but ,lvt 

a good approximation. 

may be less  than the maximum correctable number t 
1 1 0' 

The only exception 

Within this class of possible schemes, we restrict  our  attention to  a set of 'good' 
Tables 1-4 concern a binary sym- codes. 

metric channel with p = .01; the specifications considered a re  P r (e )  = lom1' for  
Tables 1-3, Pr (e )  = for  Table 4, R' = , 5 for Table 1, . 7 for  Tables 2 and 4, and 
. 8 for  Table 3. (For  this channel C = . 92 b i t s  and Rcomp = . 74.) Table 5 concerns a 
binary symmetric channel with p = . 1 (so that C = . 53 and Rcomp = . 32); the specifica- 
tions are RI = . 15 and P r (e )  = 
that C = 4.86 and Rcomp = 4. 11); the specifications a r e  RI = 4, and Pr (e)  = 10-l'. 

Tables 1-6 a r e  representative of such lists. 

Table 6 concerns a 32-ary channel with p = . 01 (so 

Since the value of a particular scheme depends strongly upon details of implementation 

75 



Table 1. Codes of ra te  . 5 that achieve P r (e )  S 10-l' on a binary symmetric channel 
with crossover probability p = . 01. 

(414,207) 51 

3 
5 

1 1  

9 
7 

19 
15 
13 
1 1  

9 

6 
5 

1 1  
1 1  
10 
10 

9 

25 

1 
2 

5 
4 
3 

9 
7 
6 
5 
4 

d . .  

25 

19 
7 

1 1  
17 
5 
7 

9 
15 
23 

1 1  
21 

6 
10 

8 

9 
9 

12 

9 
3 
5 
8 
2 

3 

4 
7 

1 1  

414 

1140 
2139 
3024 
3276 
3402 
4826 
4191 
4064 
5842 
7874 

1364 
2387 
2520 
4536 
2583 
4536 
2646 

one stage 

e -0 
e -0 
'best' e-o 
e -0 
e -0 
e -0 
e-o 
e-o 
e-o 
e -0 

d&e 
d&e 
d &e 
d &e 
d &e 
d&e 
d &e 

Notes - Tables 1-6 

N(n) = length of inner (outer) code 
K(k) = number of information digits 
D(d) = minimum distance (d - 1 is the number of deletions corrected) 
T(t)  = maximum number of e r r o r s  corrected 
nN = over-all block length 
Comment: e-o = errors-only, d&e = deletions-and-errors decoding in the 

outer decoder. 
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-12 Table 2. Codes of ra te  . 7 that achieve Pr(e) G 10 on a binary symmetric channel 
with crossover probability p = . 01. 

( N,K 1 D T ( n,k ) d t nN Comment 

(2740, 1918) 143 71 . . .  2 740 one stage 

( 127,99 ) 9 4 ( 530,476 ) 55 27 67310 e -0 , 
I ( 255,207 
I 

( 255,199 
( 255,191 

( 255,187 

13 6 

15 7 

17 8 

19 9 

4 ( 127,98 ) 10 

( 127,92 ) 

( 127,91 ) 

( 255,199 ) 

( 255,198 ) 

f 255.198 1 

( 255,191 ) 

( 255,190 ) 

( 255,190 ) 
( 255,187 ) 

( 255,186 ) 

11 

12 

15 

16 

16 

17 

18 

18 

19 
20 

4 

5 

6 
6 
7 

7 

7 

8 

8 

8 

465,401 ) 65 32 118575 e -0 
292,262 ) 31 15 744 6 0 e-o 
306,286 ) 21 10 78030 e -0 
308,294 ) 15 7 78540 be s t  e -0 

324,294 ) 31 12  41 148 d &e 
(1277, 1234) 

(1084, 1059) 

( 214, 192 ) 

( 234,211 ) 

( 214,193 ) 

( 214,200 ) 

( 232,218 ) 

( 232,218 ) 

( 198,189 ) 

( 224,215 ) 

43 

25 

23 

2 4  

22 

15 

15 

15 

10 

10 

5 

10 

4 

3 

9 
3 

3 

7 

3 

2 

162179 

137668 

545 70 

59670 

545 70 

54570 

59160 

59160 

50490 

57120 

d &e 
d&e 
d &e 
d&e 
d&e 
d &e 
d &e 
d &e 
d &e 
d&e 

Table 3. Codes of ra te  . 8 that achieve Pr(e)  S 10-l' on a binary symmetric channel 
with crossover probability p = . 01. 

( N,K D T ( n,k 1 d t nN Comment 

(2047, 1695) 67 33 (1949, 1883) 67 33 3989603 e -0 
(2047, 1684) 69 34 (1670, 1624) 4 7  23 34 18490 'best' e-o 
(2047, 1673) 71 35 (1702,1666) 37 18 3483994 e-o 
(2047,1662) 73 36 (2044,2014) 31 15 4184068 e -0 

(2047,1695) 67 31 (1477, 1427) 51  3 3023419 d&e 
(2047, 1695) 67 32 ( 866,856 ) 31 6 18 13 64'2 d &e 
(2047,1684) 69 32 (1234,1200) 35 3 2525998 d &e 
(2047, 1684) 69 33 ( 763,742 ) 22 5 1561861 d &e 
(2047, 1673) 71 34 ( 804,787 ) 18 5 1645788 d &e 
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Table 4. Codes of rate . 7 that achieve Pr (e)  =s on a binary symmetric channel 
with crossover probability p = . 01. 

d t nN Comment ( N,K D T ( n,k ) 

(784,549) 

(127 ,99  ) 

(127 ,93  ) 

(255,207) 

(255,199)  

(255, 191) 
(255,187) 

(127,98 ) 

(127,92 ) 

(127,91 
(255,206) 

(255,199) 

(255,198) 

(255,198) 

(255, 191) 

(255,190) 

(255,190) 
(255, 187) 

(255, 186) 

49  

9 
11 

13 

15 

17 

19 

10 

11 

12 

14 

15 

16 

16 

17 
18 

18 

19 
20 

24 

4 

4 

5 

6 

6 

6 

7 

7 

7 

8 
8 

8 

. . .  

(236,212) 

(475,459) 
(204, 176) 

(136, 122) 

(123, 115) 

(132, 126) 

(564,545) 
(140, 127) 

(477,466)  

(128,111)  

( 98,88 
(102,92 

( 92 ,83  

( 92 ,86  
(100,94 

(100,94 ) 

( 88,84  
(lOO,96 ) 

25 

17 

29 
15 

9 
7 

20  

14 

12 

18 

11 

11 

10 

7 

7 

7 

5 

5 

12 

8 

14 

7 

4 

3 

2 

5 

4 

8 
2 

1 

4 

1 

1 

3 
1 

1 

7 84 

29972 
60325 

52020 

34680 

31365 

33660 

71628 

17780 

60579 

32640 

24990 
26010 

23460 

23460 

25500 

25500 

22440 

25500 

one stage 

e-o 
e -0 
e -0 
e -0 
'be st e - o 
e-o 

d&e 
d&e 
d&e 
d&e 
d &e 
d&e 
d &e 
d &e 
d&e 
d &e 
d&e 
d&e 

Table 5. Codes of rate . 15 that achieve Pr (e)  S on a binary symmetric channel 
with crossover probability p = . 1. 

( NsK) D T ( n,k d t nN Comment 

(511, 76) 171 85 . . .  51 1 one stage 

( 31, 11) 11 5 ( 59,251 35 17 1829 e -0 

( 31 ,6  15 7 ( 54,421 13 6 1674 e -0 

( 63, 18) 21 10 ( 51,271 25 12 3213 e -0 

( 63,16)  23 11 ( 35,211 15 7 2205 e -0 

( 31,111 11 4 ( 40,171 24 5 1240 d&e 
( 31, 10) 12 4 ( 43,20)  24 4 1333 d&e 
( 31, 10) 12 5 ( 47022) 26 10 1457 d&e 
( 3 1 , 6  15 5 (116,90)  27 2 3596 d&e 

( 31 ,6  ) 15 6 ( 45,351 11 3 1395 d&e ~ _ _ _  
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I . 

-12 Table 6. Codes of rate 4 that achieve Pr(e) C 10 on a 32-input symmetric channel 
with probability of error p = . 01. 

(540,432) 

( 31927 
( 31,25 ) 
(148,125) 
(148, 12 1) 

(223,196) 
(223,192) 
(223,188) 

[zrtr, ~6 i j  

(298,263) 
(298,259) 
(298,255) 
(298,25 1) 

( 31,26 1 
(148, 125) 
(148,123) 
(148, 12 1) 

(223,196) 
( 2 2 3 ;  192) 

(298,263) 
(298,259) 

57 

5 
7 

13 
15 
15 
17 

19 
ii 

19 
21 

23 
25 

6 
13 
14 
15 
15 
17 

19 
21 

28 

2 

3 
6 
7 
7 
8 

9 - 
0 

9 
10 
1 1  
12 

2 

5 
6 
6 
6 
7 

8 

9 

. . .  

( 393,361 ) 

(3250,3224) 
( 341,323 ) 

( 652,638 ) 
( 245,223 ) 

( 198,184 ) 
( 196,186 ) 
t - A -  - 1 -  \ \ L . l 2 , & . ) ,  , 
( 172,156 ) 

( 151,139 ) 

( 123,115 ) 

( 120,114 ) 

( 434,414 ) 

( 266,252 ) 
( 375,361 ) 

( 466,456 ) 

( 168,153 ) 

( 128.119 1 
( 107,97 ) 

( 89,82 1 

540 

33 16 12183 

27 13 100750 
19 9 50468 
15 7 96496 
23 1 1  54635 
15 7 44 154 
11 5 43708 
3? - -  12 77414 

17 8 51256 

13 6 44998 
9 4 36654 
7 3 35760 

21 
15 
15 
1 1  

16 
10 
1 1  
8 

7 13454 
2 39368 
6 55500 
2 68968 
2 37464 
2 28544 
2 31886 
2 26522 

one stage 

e-o (both codes RS) 
e-o 
e-o 
e-o 
e-o 
e-o 
e -0 
e-o 

e-o 
e -0 
e-o 
e-o  

d&e 
d &e 
d&e 
d&e 
d&e 
d &e 
d&e 
d&e 
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l and the requirements of a particular system, we cannot say that a particular entry on 
any of these lists is 'best.' If minimum over-all block length is the overriding criterion, 
then a single stage of coding is the best solution; however, we see  that using only a 

single stage to achieve certain specifications may require the correction of a great num- 
ber of e r ro r s ,  so  that almost certainly at some point the number of decoding compu- 
tations becomes prohibitive. Then the savings in number of computations which 
concatenation affords may be quite striking. 

Among the concatenated codes with errors-only decoding in the outer decoder, the 
'best' code is not too difficult to  identify approximately, since the codes that correct  the 
fewest e r r o r s  over all tend also to be those with comparatively short  block lengths. 
Tables 7 and 8 display such 'best' codes for a range of ra tes  and Pr(e) = 10-l' and 
on a BSC with p = .01; the best single-stage codes are also shown for comparison. 

a. Discussion 

F rom these tables we may draw a number of conclusions, which we shall now 

From Tables 1-6 we can evaluate the effects of using deletions-and-errors rather 
discuss. 

than errors-only decoding in the outer decoder. These a r e  
1 

2. 

nyl iqible  effect on the inner code; 
reduction of the length of the outer code and hence tne uver -z?? b k c k  1PnEth bv a 

factor less  than two; and 
3 .  appreciable savings in the number of computations required in the outer decoder. 
F rom corn-parison of Tables 2 and 4 and of 7 and 8 we find that the effects of squaring 

the required probability of e r ro r ,  at moderately high rates ,  a r e  
1. negligible effect on the inner code; and 
2. increase of the length of the outer code and hence the over-all block length by a 

factor greater  than two. 

We conclude that, at the moderately high rates where concatenation is most useful, 
the complexity of the inner code is affected only by the rate required, for  a given 
T h q  nn el. 

- 
These conclusions may be understood in the lignr oi LLC f~X~-;;k-g "?ncidwations. 

Observe the columns in Tables 7 and 8 which tabulate the probability of decoding e r r o r  
for the inner decoder, which is the probability of e r r o r  in the superchannel seen by the 
outer decoder. 
lo-*, largely independent of the ra te  o r  over-all probability of e r ro r  required. It seems 
that the only function of the inner code is to bring the probability of e r r o r  to this level, 
at a rate slightly above the over-all ra te  required. 

This probability remains within a narrow range, approximately - 

Thus the only relevant question for the design of the inner coder is: How long a block 
o r  so, at a rate  length is required to bring the probability of decoding e r r o r  down to 

somewhat in excess of the desired ra te?  If the outer decoder can handle deletions, then 
we substitute the probability of decoding failure for that of decoding e r ro r  in this 
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question, but without greatly affecting the answer, since getting sufficient minimum dis- 
tance at the desired rate  is the crux of the problem. 

Once the inner code has achieved this moderate probability of e r ro r ,  the function of 
the outer code is to drive the over-all probability of e r ro r  down to the desired value, at 
a dimensionless rate near one. 

The arguments of section 5 . 4  a r e  a useful guide to understanding these results. 
Recall that when the probability of e r ro r  in the superchannel was  small ,  the over-all 
probability of e r ro r  was bounded by an expression of the form 

-nNE1(R1) 
Pr(e)  S e 

-3 Once we have made the superchannel probability of e r ro r  lsmalll (apparently -10 ), w e  
then achieve the desired over-all probability of e r r o r  by increasing n. To square the 
P r (e ) ,  we would expect to have to double n. Actually, n increases by more than a factor 
of two, which is due to our keeping the inner and outer decoders of comparable 
complexity. 

That the length of the outer code decreases by somewhat less than a factor of two 
when deletions -and-errors decoding is permitted is entirely in accord with the results 
of section 5.4. Basically, the reason is that to correct a certain number of deletions 
requires one-half the number of check digits in the outer code as to correct the same 
number of e r rors ,  s o  that for a fixed rate  and equal probabilities of deletion o r  e r ro r ,  
the deletion corrector will be approximately half as long. 

Finally, we observe that, surprisingly, the ratios of the over-all length of a con- 
catenated code of a given rate  to that of a single-stage code of the same rate  are given 
qualitatively by the efficiencies computed in section 5. 4 - surprisingly, since the bounds 
of that section were derived by random-coding arguments whereas here we consider 
BCH codes, and since those bounds a r e  probably not tight. 
the outer code also agrees approximately with that specified in section 5 . 4  as optimum 
for a given over-all rate. 

understanding of the performance of concatenated codes on discrete memoryless chan 
nels. 

The dimensionless ra te  of 

In summary, the considerations of section 5 . 4  seem to be adequate for  qualitative 

6 . 2  CODING FOR A GAUSSIAN CHANNEL 

We shall now take up the problem of coding for  a white additive Gaussian noise chan- 
nel with no bandwidth restrictions, as an example of a situation in which we have some 
freedom in choosing how to modulate the channel. 

thogonal waveforms every T seconds over the channel. (Two waveforms are orthogonal 
if their crosscorrelation is zero; a set of waveforms is biorthogonal if it consists of 

M/2 orthogonal waveforms and their  negatives.) If every waveform has energy S, and 

RO One feasible and near-optimum modulation scheme is to send one of M e 2 bior- 
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the Gaussian noise has two-sided spectral density No/2, then we say the power signal- 
to-noise ratio is S/NoT. Since the information in any transmission is Ro bits, the infor- 
mation rate  is Ro/T bits per second; finally, we have the fact that the dimensionless 
quantity signal-to-noise -- ratio per  information - bit is S/(NoRo). 

bandwidth white Gaussian noise channels. 
reliable communication it must exceed In 2 .7. Our objective wi l l  be to achieve a 
given over-all probability of e r ro r  for fixed S/(NoRo), with minimum complexity of 
instrumentation. 

I 

S/(NoRo) is commonly taken as the criterion of efficiency for signaling over unlimited 
Coding theorem arguments39 show that for  

The general optimal method39 of demodulating and detecting such waveforms is to 
se t  up a bank of M/2 matched filters. For  example, the signals might be orthogonal 
sinusoids, and the fi l ters narrow-bandpass filters. In some sense, the complexity of 
the receiver is therefore proportional to the number of matched fi l ters that a r e  
required - that is, to M. The bandwidth occupied is also proportional to M. 

Another method of generating a set  of biorthogonal waveforms , especially interesting 
fo r  its relevance to the question of the distinction between modulation and coding, is to 
break the T-second interval into (2T/M)-sec subintervals, in each of which either the 
positive o r  the negative of a single basic waveform is transmitted. If we make the cor-  
respuidcsLi<CS {pco’+iv.lp- 1) and (negative- 0) ,  we can let  the M sequences be the 
code words of the (M/2, R ) binary code that results from adding an over-aii pariiy 
check to an (M/2-1, Ro) BCH code; it can then be shown that the M waveforms so  gen- 
erated a r e  biorthogonal. If they a r e  detected by matched fi l ters,  then we would say that 
we were dealing with an M-ary modulation scheme. On the other hand, this (M/2, Ro) 
code can be shown to have minimum distance M/4, and is thus suitable for a decoding 
scheme in which a hard decision on the polarity of each (2T/M)-sec pulse is ioilowed by 
a minimum-distance decoder. In this last case we would say that we were dealing with 
binary modulation with coding, rather than M-ary modulation a s  before, though the t rans-  
mitted signals were identical. 
many methods intermediate between these extremes, so  finely graded that to distinguish 
w:iZa c i x ~ 2 : k t i ~ ~  p d q  and coding begins could only be an academic exercise. 

0 

The same sequences could be decoded (or  detected) by 

We use maximum-likelihood decoding for the biorthogonal waverorms; Lilt: L U ~  i G -  

sponding decision rule for a matched filter detector is to choose the waveform cor re-  
sponding to the matched filter whose output at the appropriate sample time is the greatest 
in magnitude, with the sign of that output. Approximations to the probability of incorrect 
decision with this rule a re  discussed in Appendix B. In some cases, we permit the 
detector not to make a decision - that is, to signal a deletion - when there is no matched 
f i l ter  output having magnitude greater by a threshold D or  more than all other outputs; 
in Appendix B we also discuss the probabilities of deletion and of incorrect decision in 
this case. 

We consider the following possibilities of concatenating coding with M-ary modulation 
to achieve a specified probability of e r ror  and signal-to-noise ratio per information bit. 
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First, we consider modulation alone, with Ro chosen large enough so  the specifications 
a r e  satisfied. Next, we consider a single stage of coding, with a number of values of 
Ro, and with both errors-only or deletions-and-errors decoding. 
less  ra te  of the code, the signal-to-noise ratio per  information bit is now S/(NoRor).) 
Finally, we consider two stages of coding, or really three-stage concatenation. 

-12. results for S/(NoRor) = 5,  Pr(e) = 10 

Table 11 f o r  S/(NoRor) = 2,  P r ( e )  = 
'best' scheme; however, the schemes in which M is large enough so  that a single Reed- 
Solomon code of length less  than M can meet the required specifications would seem to  be 
very much the simplest, unless some considerations other than those that we have con- 
templated heretofore were significant. 

a fixed M and specified Pr (e) ,  which RS code of length M-1 requires the minimum signal- 
to-noise ratio per information bit? Tables 1 2 - 1 5  answer this question for Ro s 9 (after 
which the computer overflowed), and for Pr (e)  = 

Table 15 ,  we have considered only errors-only decoding, since Table 15 shows that, even 
for  Pr(e) = 
to the accuracy of our bounds, and does not affect the character of the results. The 
S/(NoRo) needed to achieve the required probability of e r r o r  without coding, for RoS  20,  

is also indicated. 

(If r is the dimension- 

Tables 9-11 a re  representative of the lists that were obtained. Table 9 gives the 

, Table 10 for S/(NoRor) = 2,  P r ( e )  = 10-l'; and 
Again, one cannot pick unambiguously the 

To organize our information about these codes, we choose to ask the question: Fo r  

10-l'. Except in 

allowing deletions -and-errors decoding improves things very little, 

a. Discussion 

Let u s  first turn out attention to Table 9, which has the richest selection of diverse 
schemes, as wel l  as being entirely representative of all of the lists that we generated. 
Certain similarities to the lists for discrete memoryless channels a r e  immediately evi- 
dent. 
the outer decoder, though not as much as before. 

of coding rather than one lessens the computational demands on the decoders, at the 
price of much increased block length. 

For instance, the use of deletions allows some shortening and simplification of 
Also, for  fixed M, going to two stages 

It seems clear that it is more efficient to let M become large enough s o  that two 
stages of coding a r e  unnecessary, and in fact large enough that a single RS code can be 
used. As M falls below this s ize ,  the needed complexity of the codes would seem to 
increase much more rapidly than that of the modulation decreases ,  while for  larger  M 

the reverse  is true. The explanation is that a certain M is required to drive the proba- 
bility of detection e r ro r  down to the point where coding techniques become powerful, for 
S/(NoRo) somewhat less  than the final signal-to-noise ratio pe r  information bit. 
this moderate probability has been achieved, it would seem to be wasteful to use modu- 
lation techniques to drive it much lower by increasing M. Tables 10 and 1 1  illustrate this 
point by showing that this critical M is not greatly affected by an enormous change in 
required Pr(e).  

Once 
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Table 9. Modulation and coding that achieve Pr(e) C 10-l' with a signal-to-noise ratio 
per  information bit of 5, on a Gaussian channel. 

M ( N.K ) D T ( n,k ) d t kKRo d/b Comment 

16384 

64 

64 

32 

32 
16 

16 
16 

16 

16 

8 

8 

8 

2 

2 

2 

b4 

64 

64 
64 

64 

64 
32 

32 

32 

32 

16 

16 

16 

16 

16 

16 

8 

8 

8 

2 

2 
2 

7 

9 

9 
1 1  
1 1  
13 

15 

17 

19 
21 

25 

29 
37 

41 

51 

- 
9 
5 
7 

9 
7 
7 

9 
7 

9 
1 1  

13 

1 1  
13 

13 

5 

5 

7 

9 
7 

9 
1 1  

3 
4 
4 

5 

5 

6 
7 

8 

9 

10 

12 

14 
18 

20 

25 

1 

2 
2 

2 

3 

2 

2 

3 

3 

3 

3 

4 
4 
6 

2 

2 

3 

4 
3 

4 
5 

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

... 

. . .  

. . .  

. . .  

. . .  

... 

. . .  

. . .  

... 

... 

. . .  

. . .  

. . .  

. .. 

.. . 

. . .  

. . .  

... 

. . .  

. . .  

(25.21) 

(77,691 

(48,421 

(92,80) 

(92,82) 

(31,271 

(63.55) 

14 

90 
72 

90 
80 

544 

2 68 
232 

200 
172 

552 

414 
3 72 

358 

310 

254 

3.22 

198 
132 

78 

84 

72 

115 
110 

95 
70 

432 

376 

248 

224 

200 

5 2  924 

9 4 7452 
7 3 4662 

5 2 3969 

13 6 3600 

1 1  5 3198 

9 4 1980 

571.4 

7. 47 

8. 89 

4. 62 

5.20 

2. 28 

2. 69 

2. 93 

3. 20 

3. 49 

1. 71 
1. 94 
2. 12 

1.43 

1 .  55 

1. 81 

6. 20 

6. 63 
6. 30 

7. 79 

8. 38 

8. 00 
4. 03 

4. 36 
4.21 

5. 03 

2. 35 

2.49 

2. 61 
2. 82 

z .  Y L  

3. 25 

1 .  78 

1. 98 

1. 97 

1. 61 

1. 81 
2. 00 

no coding 

e -0 
e-o 
e-o 

e -0 
e-o 

e-o 

e-o 

e-o 
e-o 

e-o 
e-o 
e-o 
e-o 

e-o 
e-o 

d&e 
d &e 
d&e 
d&e 

d&e 
d&e 
d &e 
d &e 
d&e 
d&e 

d&e 
d &e 
d&e 
d&e 
dare 

e-o 

e-o 
e-o 

e-o 
e -0 
e-o 
e-o 

Notes: Tables 9-11. 

N, K, D, T ,  n, k, d, t have been defined in Section I 
M = number of biorthogonal signals transmitted 
kKRo = total bits of information in a block 
d/b = dimensions required (nNM/(2kKRo)) per information bit. 
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-12 Table 10. Modulation and coding that achieve Pr (e)  S 10 with a signal-to-noise ratio 
per information bit of 2, on a Gaussian channel. 

M ( N # K  1 D T ( n,k 1 d t Comment 

45 22 . . .  e -0 512 (211, 167) 
5 12 (261,209) 43 2 1  . . .  e -0 
5 12 (311,271) 41 20 ... e-o 
256 (255,195) 61 30 . .. e -0 

128 (127,97 ) 3 1  15 (127,119) 9 4 e-o 
128 (127,99 29 14 (127,117) 11 5 e -0 

128 (127, 101) 27 13 (127, 124) 4 0 d&e 
128 (127, 104) 24 11 (127, 122) 6 0 d &e 
128 (127,104) 24 10 (127, 120) 8 0 d &e 

Note: The special RS bound on weights in section 3. 3a has been used to compute prob- 
abilities for the last three codes. With the general bound of Appendix B, it 
appears that deletions a re  no help. 

-3 Modulation and coding that achieve P r (e )  d 10 
per information bit of 2, on a Gaussian channel. 

Table 11. with a signal-to-noise ratio 

M ( N,K ) D T ( n ,k  ) d t Comment 

16384 . . .  . . .  no coding 
~. ~ 

256 ( 37827 1 11 5 . . .  e -0 
256 ( 45,37 1 9 4 . . .  e -0 
128 ( 48834 15 7 . . .  e-o 
128 ( 50,38 1 13 6 . . .  e-o 
64 (895,7191 91 45 . . .  e-o 

~~ 

Note: Deletions are no help. 
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Tables 12- 15. Minimum S/(NoRor) achievable on a Gaussian channel. 

Table 12. 
pr(e) = 

Table 13. 
pr(e) = 

Table 14. 
Pr(e) = 

Ro no code RS code t no code RScode t no code RS code t 

1 

2 
3 
4 
5 
6 
7 
8 

9 
10 
11* 
12* 
14* 
16* 
18* 
20* 

4. 78 
5. 42 

4. 26 4. 23 1 
3. 57 3. 1 1  3 
3. 12 2. 41 5 

2. 81 2. 02 9 
2. 59 1. 77 18 
2. 41 1. 61 33 
2. 28 1. 50 62 
2. 16 
2. 18 
2.11 
2.00 
1. 92 
1. 85 
1. 80 

11. 30 

11. 96 
8. 68 7. 34 1 
6. 92 4. 59 3 
5. 83 3. 19 5 
5. 09 2. 44 10 

4. 56 2. 01 19 
4. 16 1. 76 34 
3. 85 1. 60 64 
3. 60 
3. 40 
3. 23 

2. 96 
2. 76 

2. 60 
2. 48 

Table 15. Pr(e) = lo-" 

17. 98 
18. 66 
13. 16 
10. 28 
8. 52 
7. 34 
6. 49 
5. 85 
5. 35 
4. 95 
4. 63 
4. 35 
3. 93 
3. 61 
3. 36 
3. 16 

10.42 
6. 01 
3. 88 
2. 80 
2.21 
1. 88 
1. 67 

1 
3 
6 

1 1  

19 
35 
65 

RS code (d&e) P€ R no code RS code t 

1 24. 74 
2 25.42 

3 17. 67 13. 53 1 .0000002 13. 60 

4 13. 67 7. 45 3 . 0001 6. 86 
5 11. 23 4. 54 6 . 0 0 2  4. 25 
6 9. 60 3. 13 1 1  . 009 3. 02 
7 8. 43 2. 40 20 .02 2. 38 
8 7. 55 1. 98 36 . 036 
9 6. 86 1. 73 67 . 05 
10 6. 31 
11* C Q A  

12* 5.49 

18* 4. 1 1  

14* 4. 90 
16* 4. 46 

2 o* 3. 84 

Notes: Tables 12-15. 

Ro = logz M 
no code = minimum signal-to-noise ratio per information bit achievable without coding 
RS code = minimum signal-to-noise ratio per information bit achievable with an RS code 

t = number of e r rors  which the RS code must correct 
RS code (d&e) = minimum signal-to-noise ratio per information bit achievable by an 

RS code correcting t e r rors  and 2t deletions. 
*For these values of Ro a weaker probability bound was used (see Appendix B). 

of length M - 1 

87 



Since the RS codes are the most efficient of the BCH class  with respect to the num- 
ber  of check digits required to achieve a certain minimum distance and hence e r r o r -  

correction capability, another important effect of increasing M is to  make the symbol 
field GF(M) large enough that RS codes of the necessary block lengths can be realized. 
Once M is large enough to do this, further increases result  in no further increase of 
efficiency in this respect. 

It is interesting to  note that for a given M, the same RS code is approximately optimum 
over a wide range of required Pr(e). No satisfactory explanation for this constancy has 
been obtained; lest  the reader conjecture that there might be some universal optimality 
to  these codes, however, it might be mentioned that the same tables for a different type 
of probability distribution than the Gaussian show markedly different codes as optimum. 
Table 15 includes the superchannel probabilities of e r r o r  seen by the outer coder; they 
a r e  somewhat higher than the comparable probabilities for the discrete memoryless 
channel, 10 -10 , but remain in the same approximate range. 

Tables 12-15 a r e  presented as much for  reference as for  a source of further insight. 

-2 -3 

6.3 SUMMARY 

A most interesting conclusion emerges from these calculations. A distinct division 
of function between the outer code and the inner stages - of modulation, o r  inner coding, 
o r  perhaps both - is quite apparent. The task of the inner stages, while somewhat 
exceeding the specified rate  o r  S/(N R ), is to turn the raw channel into a superchannel 
with moderate (1 O-'- 1 0-4) probability of e r ro r ,  and enough inputs s o  that an RS code 
may be used as the outer code. The function of the outer code is then to drive the over- 
all probability of e r r o r  as low as desired, at a dimensionless ra te  close enough to  one 
not to hurt the over-all ra te  o r  S/(NoRo) badly. 

The first is the 
most efficient realization of RS encoders and decoders, with which we w e r e  concerned 
in Section IV. The second, which has been less explored, is the problem of efficient 
realization of a moderate probability of e r r o r  for given specifications. 
theory has previously focused largely on the problem of achieving negligibly small  proba- 
bilities of e r ro r ,  but the existence of RS codes solves this problem whenever the problem 
of achieving a probability of e r ro r  less  than This last prob- 
lem is probably better considered from the point of view of modulation theory o r  signal 
design than coding theory, whenever the former techniques can be applied to the channel 
a t  hand. 

0 0  

For  future work, two separate problems of design a r e  suggested. 

Communication 

say, can be solved. 
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APPENDIX A 

Variations on the BCH Decoding Algorithm 

A. 1 ALTERNATIVE DETERMINATION OF ERROR VALUES 

The point of view which led us  to the erasure correction procedure of section 4.5 
leads us also to another method of determining the values of the errors .  
number of e r r o r s  t has been discovered; then the t X t matrix M has rank t and there- 
fore nonzero determinant. 

If we were to guess the corresponding e r r o r  value e .  and modify the TP accordingly, the 

guessed word would still have either t or (on the chance of a correct guess) t - 1 e r ro r s ;  

Suppose the 

Let the decoder now determine the locator X. of any er ror .  
JO 

I JO 
I 

I thus the t X t matrix Mi formed from the new T i  would have zero determinant if  and only 
i f  the guess were correct. 
mial in  e 

M this equation is only of first degree, and an explicit formula for e .  
In symbols, let 

In general one would expect this argument to yield a polyno- 
of degree t as the equation of condition, but because of the special form of 

can be obtained. 
j0 

t JO 

Then 
> - L a  - 3  

I = ' .  
TP - ud '[rn 0 t n t s ,  m 0 tn )  = ud S(motnts ,  m 0 tn)-ejoud Xjo(motnts,  motn) 

2to-2 
- E .  X. 

2to-3 
5 T' 

2to-t- 1 
- E .  X. 

0 

Mi = 

m +n 
= Tl - e .  X 0 (r (X ) = T P - E .  Xn .  

Jo Jo d jo Jo Jo 

2to-3 
- E .  X. ... T2t0-t-l - E .  Jo X. Jo 

2to-4 
T -w. x ... - E; X; 

Zto-4 J, Jo "0 "0 

2to-t-2 2to-2t 
- E .  X. . . .  - E .  X. 

t Let u s  expand this determinant into 2 determinants, using the fact that the deter- 

minant of the matrix which has the vector (;+%) as a row is the sum of the determinants 
of the two matrices which have and b in that row, respectively. We classify the 
resulting determinants by the number of rows  which have E 

A 

as a factor. 
jo  

There is one determinant with no row containing E .  , which is simply 1 Mt I .  
JO 
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There are t determinants with one row having E; a s  a factor. For example, the 
JO first is 

2to-2 2to-3 2to-t-j 
-E. X. . . .  -E. X. 

Jo Jo Jo Jo 1 T2to-3 T2 t o-t - 2 . . .  T2t -4 
0 

T2t -2t . . .  T2t -t-2 
0 0 -  

1 T2to-t-1 

There are (i) determinants with two rows having E. as a factor. The first is 
JO 

2to-t- 1 1 2to-2 2to-3 
-E. X. . . .  -E. X. 

Jo Jo Jo Jo 
2to-3 2to-4 2to-t-2 

-E. X. -E. X. . . .  -E. X. 
Jo Jo Jo Jo Jo Jo 

2t o-t - 3 T2to-4 T2to-5 . . .  

1 T2to-t- 1 T2 to-t - 2 . . .  T2t -2t j 
0 

But in this determinant the first row is simply X. times the second, so that the deter- 

minant is zero. Furthermore, in all such determinants with two o r  more rows having 
E .  

determinants are zero. 

JO 

as a factor, these rows will  be some power of X. t imes each other, so that all such 
JO JO 

The t determinants with one row having E .  as a factor a r e  all linear in E .  , and 
JO JO 

contain explicit powers of X. between 2to - 2t and 2to - 2; their sum is then 
JO 

2to-2t 
-E. X. 

where P(Xjo) is a polynomial of degree 2t - 2,  whose coefficients a r e  functions of the 

original Tn. m 
Finally, we recall  that E .  = e .  X. OIJ (" ) and that 1M;l = 0 if and only if e .  is 

J, io J, d jo JO 
chosen correctly, from which we get the equation of condition 

2to-2t 
0 = IMil = IMtI - E. X.  

Jo Jo p(xjo) 

so 
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IMtI 
m t2to-2t e .  = 
0 Jo x. 

JO 

(A. 1) 

lMtl can easily be obtained as a by-product of the reduction of M. The only t e rm in 
the denominator of (A. 1) that is not readily calculable is P . In general, i f  Aik is 

kth column are struck the determinant of the matrix remaining after the ith 

f rom Mt, then 

2t  

‘(“j0) = 2 (-Xjo)2t-1 1 Aik. 
1=2 i t k = l  

A simplification occurs when we are in  a field of characteristic two. For note that 
because of the diagonal symmetry of Mt, Aik = Aki. 

entirely of pairs Aik t Aki = 0, unless 1 is even, when the entire sum equals A.., where 
j = 1/2. Then 

Any sum C Aik wi l l  consist 
i tk=1 

J J  

Evaluation of the coefficients of P(X) in a field of characteristic two therefore involves 
calculating t (t-1) X (t-1) determinants. 

A. 11 Example 

Let the decoder have solved Eqs. 50 as before, obtaining as a by-product 1 Mt 1 = u 6 . 
Trivially , 

AZ2 = T 4 =  u 13 , All  = T2 = 0. 

The first error locator that it wi l l  discover is X1 = u14. Then, f rom Eq. A. 1, 

4 b 
U - - 

10 1 3 = ‘  
- 

U12(Q13 t U Q14t  U ) Q 

X1(XltudlXltud2)(Al 
e l - - 3  2 

Similarly, when it discovers X2 = 
6 

3 7  10 13 
U e2 = 

u ( u  t u . u l l t u  ) u  

Then it can solve for d l  and d2 as 

A. 12 Remarks 

11 
a s  

= a. 

before. 

The procedure just described for determining e r r o r  values is clearly applicable in 
principle to  the determination of e rasure  values. In the last case, however, < must be 
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L replaced by koud, the vector of elementary symmetric functions of the s - 1 erasures  

other than the one being considered, and the original modified cyclic parity checks TI 
by the modified cyclic parity checks defined on the other s - 1 erasure locators. This 
means that the determinants appearing in Eq. A. 2 ,  as well as 1 Mt 1 ,  must be recomputed 
to solve for each erasure.  In contrast to the solution for the e r r o r  values, this promises 
to be tedious and to militate against this method in practice. We mention this possibility 
only because it does allow calculation of the correct value of an erasure,  given only the 
number of e r ro r s  and the positions of the other erasures ,  without knowledge of the loca- 
tion or value of the e r ro r s ,  a capability which might be useful in some application. 

The erasure-correction scheme with no e r r o r s  (section 4. 5 )  can be seen to be a spe- 
cial case of this algorithm. 

A. 13 Implementation 

After we have located the e r ro r s ,  we have the option of solving for the e r r o r  values 

If we choose the former method, we need the t (t-1) X (t-1) determinants A . .  of (A. 2). 

directly by (A. l),  or indirectly, by treating the e r r o r s  as erasures  and using Eq. 50. 

JJ 
In general this requires 

multiplications, which is rapidly too many as t becomes large. 
calculating all A. .  at once which seems feasible for moderate values of t. 
a field of characteristic two. 

There is a method of 
We assume 

JJ 

Let B be the determinant of the jX j matrix which remains when all the 
al’a2’  * a th rows and columns but the alth, a2 , . . . , a t h  a re  struck from Mt. In this notation 

J 
and A.. = B1,2,  

JJ lMtl = B1,2,.  . . , t  . . . , j-1, j t l , .  . . , t ’  

The reader ,  by expanding B in t e rms  of the minors of i ts  last row and cancelling those 
t e rms  which because of symmetry appear twice, may verify the fact that 

B L 
- - T2t -2a. B a l ,  a 2 , .  . . a Ba l , aZ , .  . . a  + T2to-Za.tl a l , a 2 , .  . . aj-2 

j O J  j- 1 J 

B t . . .  2 
T2to-2a.t2 a l ,  a2, .  . . aj-3, aj-l 

J 

The use of this recursion relation allows calculation of all A.. with Nt multiplications 
(not counting squares), where, for small  t ,  Nt is N2 = 0 (see section A. 111, N 3  = 3, 
N4 = 15, N5 = 38, N6 = 86, N7 = 172, N8 = 333 ,  Ng = 616. 

polynomial E(X) by s t  multiplications; E(X) has t e rms  in Xm, mo t 2to -2t s m s 
mot 2t t s, or a total of 2t t s t 1 terms.  The value of E(X) can therefore be obtained for 

JJ  

Once the A . .  are  obtained, the denominator of (A. 1) can be expressed as a single 
JJ 
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1 X = 1, p- , p-', . . . in turn by the Chien31 method of solving for the roots of ue(X), and 
in fact these two calculations may be done simultaneously. Whenever pn-' is a root of 

n-i) 
I ue(X), E(P wi l l  appear as the current value of E(X). Since IM I will  have been 
I 
I 

t 
obtained as a by-product of solving for ue(X), an inversion and a multiplication will  give 

the e r r o r  value corresponding to  X. = . Other n(st2t)  multiplications by pm a r e  

involved here, and s t 2t memory registers. 
JO 

In order to compare the alternative methods of finding e r r o r  values, we simply com- 
pare the number of multiplications needed in each case, leaving aside all analysis of any 
other equipment or operations needed to realize either algorithm. 
values of s erasures  can be determined with approximately 2s(s-1) multiplications. For 
the first  method, we need approximately N multiplications to find the e r r o r  values, and 

and 2s(s-1) to find the erasures;  for the second, E(stt)(stt-1) to find both the erasures  
and the e r rors .  
requires fewer multiplications when t C 7, which suggests that it ought to be considered 
whenever the minimum distance of the code is 15 or less. 

We recall  that the 

t 

Using the values of N given ear l ier ,  we find that the former method t 

A. 2 ALTERNATIVE DETERMINATION O F  ERROR LOCATIONS 

Continued development of the point of view expresseci a i ~ ~ v e  gi -xz  zz 25 ?!ternalive 

method of locating the e r rors .  
sure ,  in a received word with t e r ro r s ,  then the resulting word has t e r r o r s  if  the t r ia l  
symbol w a s  in e r ro r .  
defined now by s t 1 erasure locators then indicates the e r r o r  locations. 
may verify the fact that if X 

If we tentatively consider a received symbol as an e ra-  

The vanishing of the t X t determinant M" formed from the T" P 
The reader 

is the locator of the ti-ia? a y d m l ,  
JO 

T i  = Tptl  - X. T P v  
JO 

and 

1 T2t -2 - xj  T2t -3  . . .  T2to-t - XjoT2to-t-l r .2 ,  0 -1 - x j  0 T2to-2 0 0 0  

1 -- - - x.  T2L -t-Z 

I Zto-t- i Jo 0 
- A  1 . . .  T T2to-3 jo 2to-4 

0 
M; = 

If we expand I M" I by columns, many of the resulting determinants will  have one column 
equal to -X. t imes another. 

t 
The only ones that will not will  be 

JO 
A > -5 

Do = p z t  0 -1, Zto-t)'T(2to-2, 2to-t-1)" * * 'T(Zto-t, 2to-2ttl)l 

93 



and so  forth. Thus if  X. is a root of the polynomial 
JO 

t 
D(Xjo) = 1 Dj(-Xjo)J, 

j= 0 

I M; I is zero and X .  is an e r r o r  locator. It can be checked by the expansion of D. into 
JO J 

three matrices, as w a s  done ear l ier  in the proof that the r a n k  of M is t ,  that 

D. j = ‘e(t-jlDt 

so that 

D(X) = Dtue(X), 

and this method is entirely equivalent to the former one. Furthermore, it is clear that 

D(X) = 

T2t -t . . .  
0 

T2t -2 
0 

T2t -1 
0 

Xt- 1 
T2t 0 -2 T2t 0 -3 . . .  T2to-t- 1 

1 T2to-t- 1 TZto-t-2 * * - 2t o- 2t  

The condition of the vanishing of this matrix determinant is the generalization to the non- 
binary case of the ‘direct method’ of Chien.31 It appears to offer no advantages in prac- 
t ice,  for  to get the coefficients of D(X) one must find the determinants of t t 1 t X t 
matrices, whereas the coefficients of the equivalent ue(X) can be obtained as a by-product 
of the determination of t. 
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APPENDIX B 

Formulas for Computation 

1 
I We shall now derive and discuss the formulas used for  the computations of Section V. 

B. l  OUTER DECODER 

Let us consider first the probability of the outer decoder decoding incorrectly, o r  
We shall let pe be the probability that any symbol is in e r ro r ,  and failing to decode. 

pd be the probability that it is erased. 

Let the maximum correct-  
able number of e r r o r s  be to; then the probability of decoding e r r o r  is the probability of 
t t 1 o r  more symbol e r rors :  

If the outer decoder does errors-only decoding, pd = 0. 

0 

t=tot 1 

If the outer decoder does deletions -and-errors decoding, the minimum distance is 
d, and the maximum number of e r r o r s  corrected is to, then the probability of decoding 
e r r o r  is the probability that the number of e r rors  t and the number of deletions s sat-  
isfy 2t t s a d  o r  t > to t  1 : 

n-s-t 2 t t  s 2 d o r t & t o +  1 

Equation B. 2 is also valid for modified deletions-and-errors decoding, when to is the 
reduced maximum correctable number of errors.  

F o r  fixed t, we can lower-bound an expression of the form 

1 
s=t 

bY 
t,t 1 

1 s=t 
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To upperbound (B. 3) ,  we write it as 

s=t 1 s=t2tl 

Since the ratio of the (st l)st to  the sth t e rm in the latter series is 

(n-s-t)pd (n-t-t 2)Pd 
G E a, 

(st ')('-Pe-Pd) t2(1-pe-Pd) 

Eq. B. 5 can be upperbounded by 

By choosing t2  large enough, the lower and upper bounds of Eqs. B. 4 and B. 6 may be 
made as close as desired. In the program of Section V, we let t2  be large enough so  
that the bounds were within 1 per  cent of each other. Both (B. 1) and (B. 2) can then be 
upperbounded and approximated by (B. 6). 

B. 2 INNER DECODER 

If the outer decoder is set  to  do errors-only decoding, the inner decoder corrects  
as many e r ro r s  as  it can (to). Whenever the actual number of e r r o r s  exceed to, the 
inner decoder will either fail to  decode o r  decode in e r r o r ,  but either of these events 
constitutes a symbol e r r o r  t o  the outer decoder. If the probability of symbol e r r o r  for  
the inner decoder is po, then 

n 
n-t 

p, = 1 ("$ Pt,(l-Po) . 
t=t + I  

0 

(B. 7) 

Equation B. 7 can be upperbounded and approximated by Eq. A. 6. 
If the outer decoder is set  for  deletions-and-errors decoding, the inner decoder is 

set  to correct whenever there a r e  apparently t 
wise it signals a deletion. 

either delete o r  decode incorrectly, s o  that 

o r  fewer e r r o r s ,  where t l  S to; other- 1 
If there are more than t l  actual e r r o r s ,  the decoder will 
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I . 

t=t  1t 1 

Ordinarily t l  is set  so that p a pd, so that pd is upperbounded and approximated by e 

t = t l t l  

which in turn is upperbounded and approximated by Eq. A. 6 .  
Estimating p turns out to  be a knottier problem. Of course, if the minimum dis- 

1 
e 

tance of the inner code is d, no e r r o r  can occur unless the number of symbol e r r o r s  
is at least d -t, so  that 

l 

t=d-tl 

This is a valid upper bound but a very weak estimate of pes since in general many fewer 

than the total of t - e r ro r  patterns will cause e r ro r s ;  most will cause deletions. A 
tighter bound fo r  pe depends, however, on knowledge of the distribution of weights in 
the inner code, which is in general difficult to calculate. 

We can get a weak bound on the number Nw of code words of weight w in any code 

e) 

on GF(q) of length n and minimum distance d as follows. 
such that 2to <d. 

(t",), since to get such a word we may change any t of the w non- word of weight w is 
zero symbols in the word to zeros. The total number of words of weight w -to distance 
to f rom all code words of weight w is then 

Let to be the greatest integer 
The totai number of code wnrds of weight w -t distance t from a code 

0 e 

0 

(:).W. 0 

and all of these a r e  distinct, since no word can be distance to f rom two differem coue 
words. But this number cannot exceed the total number of words of weight w -to: 

The ref o re  

w-to 
n! to! (q-1) 

Nw S 
w! (n-w-to) ! 

(B. 9) 

Now a decoding e r r o r  will occur, when the inner code is linear, when the e r r o r  
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pattern is distance t l  o r - less  from some code word. 
tance k from some code word of weight w is 

The total number of words dis- 

riW) (q-1) 1 w  (i j)(q-2)i; i t j t 1 = k 

since all code words can be obtained by changing any 1 of the n-w zeros to  any of the 
(q-1) nonzero elements, any i of the w nonzero elements to  any of the other (q-2) non- 
zero  elements, and any j of the remaining nonzero elements to  zeros,  where i t  j t 1 = k. 
The weight of the resulting word fo r  a particular i, j, 1,will be w t 1 - j ,  s o  that the prob- 
ability of getting a word distance k from a particular code word of weight w is 

i+ j t  I= k 

Summing over all words of all weights w 2 d and all k S t 1, and substituting j = k - i - 1 2 0, 

we obtain 

-wt k-i-1 i wt21ti-k n-w-2 1-it k c c '2 Nw (n-w)! w! (q-1) ((4-2) Po ( 1 -Po) 
Pe = 

I! (u-w-1) ! i! (k-i-1) ! (w-k-1) ! w=d k=O i = O  l=O 

Interchanging sums, substituting the upper bound of (B. 9) for  Nw, and writing the ranges 
of w,k,i  and 1 more suggestively, we have 

k-1-i-t i wt21ti-k n-w-21-itk 
n! to! (n-w)! (q-1) (q-2)  Po (1 -Po) 

'e I! (n-w-I)! i! (k-1-i) ! (w-k-1) ! (n-wtto) ! k S t l  i30 120 wad 

We now show that the dominant term in this expression is that specified by k=tl, i = O ,  1=0, 
and w = d, and in fact that the whole series is bounded by 

t,-t- d-t, n-dtt . 
1 u  1 

n! to! (q-1) Po (l-Po) 
P, c 1 c 2 c 3 c 4  

t l!  (d-tl)! (n-dtto)! 
(B. 10) 

where 
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I . 

l and it is assumed that the constants am a r e  less than one. 
repeated bounding of the ser ies  by the first term t imes a ser ies  of the form 

This result follows from 

th For  example, the ratio of the (wt l ) s t  to  the w term is 

n - w - t  
O Po n - w - I  

1 - p o  n - w  w - k t I t 1  1 

s i n c e w a d ,  k G t l ,  120.  
The ratio of the (ltl)st t e rm to  the lth term is 

1 n - w - L  k - I - i  G a2; I t 1  W - k t I t 1  

of the (it l)St to the ith : 

and of the (k-l)st to the kth: 

-L - 1. -- ,.,vzxi 211 n of E?. B. 10 is a valid upper bound, but not a good approximation, 'e 
since (B. 9) is a weak bound for Nw. 
of Nw. 
the character of our results. 

A tighter bound would follow from better knowieGg:c: 

In Table 5 we use the actual values of Nw for RS codes, which markedly affects 

B.3  MODULATION ON A GAUSSIAN CHANNEL 

RO We contemplate sending one of M = 2 

width additive white Gaussian noise channel. 
mission is this. 

xi, 
lilth, and in that place have *L according to whether i = k l i l .  (These vectors cor re-  
spond to  what would be observed at the outputs of the bank of M/2 matched fi l ters if  the 

biorthogonal signals over an infinite band- 
A well-known 

The M signals are represented by the M (M/2)-dimensional vectors 
for such a t rans-  

1 G i S M/2 o r  -1 3 i 3 -M/2, which are the vectors with zeros  in all places but the 
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waveforms that they represent,uncorrupted by noise, were the input.) 

dimensional vector y = (y, ,y2, .  . . , yMI2). If we assume a noise energy per dimension 
of N,  then 

The actual, noisy outputs of the bank of matched fi l ters a r e  represented by the (M/2)- 

Interpreting 

M/2 

j= 1 

as the Euclidean distance between the vectors y and xi, we see  that the maximum- 
likelihood decision rule is to  choose that input closest in Euclidean distance to  the 
received signal. 

The case M =  4 is illustrated in Fig. B-1, where we have drawn in the lines marking 
the boundaries of the decision regions. There is perfect symmetry between the four 
inputs. 
that the received signal will lie outside the decision region that contains (L, 0). If we 
let El be the event that the received signal falls on the other side of the line AB from 
(L, 0), and E2 that it falls on the other side of CD, then it can readily be shown by a 45" 

coordinate rotation that E l  and E2 a r e  independent, and that each has probability 

If one of them, say (L,O), is selected, the probability of e r r o r  is the probability 

2 The probability that neither occurs is (1-p) , so  that the probability that at least one 
occurs, which is the probability of e r ro r ,  is 

2 q = Z p - p .  

When M > 4 ,  the symmetry between the inputs still obtains, so  let us  suppose the 
transmission of 

2 x = (L,O ,..., 0). 
1 

Let E. ,  2 C J 4 M / 2  be defined as the event in which the received signal is closer 

to  one of the three vectors x - ~ ,  xj, x - ~ ,  than to  X. 
union of these events 

J 
Then the event E of an e r r o r  is the 

J' 
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M/2 

j* 
E =  u E 

j=2 

But the probability of any one of these events is q. Thus , by the union bound, 

M/2 

(B. 11) 
j= 2 

2 i When the signal-to-noise ratio L /N is large, the bound of Eqs. B. 7-B. 9 becomes 
I quite tight. To calculate a, we use an approximation of Hastings.4' Viterbi41 has cal- 

When Ro 2 11 , the union bound is used for all 

l 
l 

culated the exact value of p fo r  3 C R C  10; we have fitted curves to  his data in the low 

p is given correctly within one per  cent. 
signal-to-noise range, and used the bound above elsewhere, s o  that over the whole range 

I 

, 

I D 

Fig. B-1. Illustrating the case M = 4. Fig. B-2. Decision and deletion regions (M=4).  

signal-to-noise ratios. 
Finally, we have the problem of bounding the deletion and e r r o r  probabilities, when 

the detector deletes whenever the magnitude of the output of some matched filter is not 
at least D greater  than that of any other. 
tion regions, again for  M =  4. 
is computed exactly as before, with L replaced by L - D; this probability overbounds 
and approximates the deletion probability, The probability of e r r o r  is overbounded , not 
tightly, by the probability of falling outside the shaded line DEF, which probability is 
computed as before with L replaced by L t D. 

replaced by L - D for  deletion probability and by Lt D for e r r o r  probability. 

Figure B-2 illustrates the decision and dele- 
It is clear  that the probability of not decoding correctly 

When M > 4 ,  the union bound arguments presented above a r e  still valid, again with L 

The case in which M =  2 is trivial. 
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M. I. T., very much expedited the search for the good codes in Sec- 
tion V of this report. 

An absorbing course in thermodynamics 

The time-sharing facility of the Computation Center, 

102 



. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

C. E. Shannon and W. Weaver, A Mathematical Theor of Communication (Univer- 

and 623 (1948). 

J. M. Wozencraft and B. Reiffen, Sequential Decoding (The M. I. T. P res s ,  Cam- 
bridge, Mass., and John Wiley and Sons, Inc., New York ,  1961). 

J. L. Massey, Threshold Decoding (The M. I. T. P res s ,  Cambridge, Mass. ,  and 
John Wiley and Sons, Inc., New York,  1963). 

W. W. Peterson, Error-Correcting Codes (The M. I. T. P res s ,  Cambridge, Mass .  , 
and John Wiley and Sons, Inc., New York,  1961). 

R. G. Gallager, "A Simple Derivation of the Coding Theorem and Some Applica- 
tions,Il IEEE Trans. ,  Vol. IT-11, p. 1, 1965. 

D. Slepian, "A Class of Binary Signalling Alphabets," Bell System Tech. J. 35, 
203 (1956). 

P. Elias, "Coding for Noisy Channels," IRE Convention Record, Par t  4 ,  p. 37, 
1955; see  also W. W. Peterson, op. cit., Chapter 12. 

I. S. Reed and G. Solomon, "Polynomial Codes over Certain Finite Fields," 
J. SIAM - 8, 300 (1960). 

J. M. Wozencraft and M. Horstein, "Coding for Two-way Channels ,11 Information 
Theor 

W. W. Peterson, op. cit., Section 4. 6 and Chapter 10. 

R. W. Hamming, "Error-Detecting and Error-Correcting Codes," Bell System 
Tech J. 29, 147 (1950). 

E. Prange, "The U s e  of Information Sets in Decoding Cyclic Codes,Il (Brussels 
Symposium), IRE Trans. ,  Vol. IT-8, p. 5, 1962. 

I. Kasami, "A Decoding Procedure for Multiple-Error-Correcting Cyclic Codes,Il 
IRE Trans. ,  Vol. IT-IO, p. 134, 1964. 

J. MacWilliams, "Permutation Decoding of Systematic Codes," Bell System 
Tech. J. 43, 485 (1964). 

L. D. Rudolph and M. E. Mitchell, flImplementation of Decoders for Cyclic Codes," 
IEEE Trans. ,  Vol. IT-10, p. 259, 1964. 

P. Elias,  "Coding for Two Noisy ChannelsStt Information Theor 
qym!-msium), C. Cherry (ed.) (Academic P res s ,  New Y o r k d ,  p. 61. 

H. Chernoff, "A Measure of Asymptotic Efficiency for- TestD ;f 2 IIJ-pe+h~cis Rased 
on a Sum of Observations," Ann. Math. Stat. 23 (1952). 

R. G. Gallager, Private communication (course notes), 1963. 

C. E. Shannon and R. G. Gallager, Private communications, 1963. 

E. N. Gilbert, "A Comparison of Signalling Alphabets,I1 Bell System Tech. J. - 31, 
504 (1952). 

sity of Illinois Press ,  Urbana, I T ,  1949); see a + so Bellxystem Tech. J. 27, 379 

-- 

(Fourth London Symposium), C. Cherry (ed.) (Butterworths, Washington, 
d p .  11. 

-- 

- 

(Third London 

21. A. A. Albert, Fundamental Concepts of Higher Algebra (University of Chicago 
P res s ,  Chicago, Ill., 1956). 

22. R. C .  Singleton, I1Maximum Distance q-Nary Codes,lf IEEE Trans., Vol. IT-10, 

23. I. S. Reed and G. Solomon, "Polynomial Codes over Certain Finite Fields," 
J. SIAM 8, 300 (1960). As N. Zierler has pointed out, these codes a re  most 
easily unJerstood and implemented as BCH codes (cf. W. W. Peterson, - -  op. cit., 
Section 9. 3). 

P. 116, 1964. 

103 



. 

24. 

25. 
2 6. 

2 7. 

28. 

29. 
30. 

31. 

32. 

33. 

34, 

35. 

3 6. 
37. 
38. 

39. 

40. 

41. 

R. C. Bose and D. K. Ray-Chaudhuri, "On a Class of Error Correcting Binary 
Group Codes,f1 Inform. Contr. 3,  68 (1960). 
A. Hocquenghem, "Codes Correcteurs d 'Erreurs ,"  Chiffres 2, 147 (1959). 
D. Gorenstein and N. Zierler,  "A Class of Cyclic Linear Error-Correcting Codes 

in p Symbols," J. SIAM - 9, 207 (1961); see W. W. Peterson, -- op. cit., Section 9. 4. 
G. D. Forney, Jr., "Decoding Bose-Chaudhuri-Hocquenghem Codes," Quarterly 
Progress Report No. 76, Research Laboratory of Electronics, M. I. T., Cambridge, 
Mass., January 15, 1965, pp. 232-240. 

m 

D. D. McCracken and W. S. Dorn, Numerical Methods and Fortran Programming 
(John Wiley and Sons, Inc., New York, 1964), Chapter 8- 
W. W. Peterson, Error-Correcting Codes, - -  op. cit., Chapter 7. 
T. C. Bartee and D. I. Schneider, "Computation with Finite Fields," Inform. 
Contr. & 79 (1963). 
R. T. Chien, "Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem 
Codes," IEEE Trans., Vol. IT-10, p. 357, 1964. 
T. C. Bartee and D. I. Schneider, "An Electronic Decoder for Bose-Chaudhuri- 
Hocquenghem Error-Correcting Codes" (Brussels Symposium), IRE Trans., 

W. W. Peterson, "Encoding and Error-Correction Procedures for the Bose- 
Chaudhuri Codes," IRE Trans., Vol. IT-6, p. 459, 1960. 
N. Zierler, "Project 950. 9: Error-Correcting Coder-Decoder. Summary of 
Results, Phase 1," TM 4109, MITRE Corporation, Bedford, Mass., 29 October 
1964. 
J. E. Savage, "The Computation Problem with Sequential Decoding," Technical 
Report 439, Research Laboratory of Electronics, M. I. T. ,  Cambridge, Mass., 
February 16, 1965 (also Lincoln Laboratory Technical Report 371). 
P. Elias, "Error-Free Coding," IRE Trans. ,  Vol. PGIT-4, p. 29, 1954. 
J. Ziv, Private communication, 1964 (unpublished paper). 

Vol. IT-8, p. 17, 1962. 

G. H. Hardy, J. E. Littlewood, and G. PAlya, Inequalities (Cambridge University 
P res s ,  London, 1952), Chapter 2. 

S. W. Golomb (ed. 1, Digital Communications with Space Applications (Prentice- 
Hall, Englewood Cliffs, N. J., 1964). 
D. Hastings, Approximations - for Digital Computers (Princeton University Press, 
Princeton, N. J., 1955). 
A. Viterbi, in S. W. Golomb (ed.), op. cit., Appendix 4. -- 

104 



. 

JOINT SERVICES DISTRIBUTION LIST 

DeDartment of Defense 

Defense Documentation Center 
Attn: TISIA 
Cameron Station, Bldg. 5 
Alexandria, Virginia 22314 

Director, National Security agency 
Attn: C3/TDL 
For t  George G. Meade, Maryland 20755 

Mr.  Charles Yost, Director 
F o r  Materials Sciences 
Advanced Research Projects Agency, DOD 
Washington, D. C. 20301 

Director 
Advanced Research Projects Agency 
Department of Defense 
Washington, D. C. 20301 

Dr. James  A. Ward 
Office of Deputy Director (Research 

and Information Rm. 3D1037) DOD 
The Pentagon 
Washington, D. C. 20301 

Dr,  EdwardM. Reilley 
Asst. Director (Research) 
Ofc of Defense Res. & Eng. , DOD 
Washington, D. C. 20301 

Deoartment of the Army 

The Walter Reed Institute of Research 
Walter Reed Army Medical Center 
Washington, D. C. 20012 

Director 
U.  S. Army Electronics Laboratories 
Attn: Mr. Robert 0. Parker ,  Executive 

Secretary , JSTAC (AMSEL - RD -X) 
Fort  Monmouth, New Jersey  07703 

Director 
U .  S. Army Electronics Laboratories 
Attn: Dr.  S. Benedict Levin, Director.  

Institute of Exploratory Research 
Fort  Monmouth, New Jersey  07703 

Commanding Officer 
U. S. Army Research Office (Durham) 
Attn: CRD-AA-IP (Richard 0. Ulsh) 
P. 0. Box CM, Duke Station 
Durham, North Carolina 27706 

Commanding Officer 
U.  S. Army Medical Research Laboratory 
For t  Knox, Kentucky 

Commanding Officer 
U. S. Army Personnel Research Office 
Washington, D. C. 

Dr. H. Robl, Deputy Director 
U.  S. Army Research Office (Durham) 
P. 0. Box CM, mite Station 
Durham, North Carolina 27706 

Librarian PTA130 
United States Military Academy 
West Point, New York 10996 

Director 
T;T. 4 rmy Electronics Laboratories 
For t  Monmouth, New Jersey  07.105 
Attn: AMSEL-RD-ADT N P  SE 

DR NR SR 
FU#1 P E  S S  
GF PF X 
NE PR X c  
NO SA XE 

xs 
Commanding General 
U. S. Army Electronics Command 
Attn: AMSEL-SC 
For t  Monmouth, New Je r sey  07703 

C. 0. , Harry  Diamond Laboratories 
Attn: Mr.  Berthold Altman 
Connecticut Ave. & Van Ness St. N. W 
Washington, D. C. 20438 

Commandant 
U. S. Command and General Staff College 
Attn: Secretary 
For t  Leavenworth, Kansas 66207 

Director 
U. S. Army Eng. GeoGesy, %.2. zzc! 

Research & Development Agcy. 
For t  Belvoir, Virginia 22060 

Commanding Officer 
Human Engineering Laboratories 
Aberdeen Proving Ground, Maryland 21 005 

Commanding Officer 
U. S. Limited W a r  Laboratory 
Attn: Technical Director 
Aberdeen Proving Ground, Maryland 21005 

Commanding Officer 
U. S. Army Security Agency 
Arlington Hall, Arlington, Virginia 22212 

Mapping 



JOINT SERVICES DISTRIBUTION LIST (continued) 

C. 0. , Harry Diamond Laboratories 
Attn: Dr. R. T. Young, Elec. Tubes Div 
Connecticut Ave. & Van N e s s  St. , N. W.  
Washington, D. C. 20438 

U. S. Army Munitions Command 
Attn: Technical Information Branch 
Picatinney Arsenal 
Dover, New Jersey  07801 

Commanding General 
Frankford Arsenal 
Attn: SMUFA-1310 (Dr. Sidney Ross) 
Philadelphia, Pennsylvania 19 137 

Commanding General 
U. S. Army Missile Command 
Attn: Technical Library 
Redstone Arsenal, Alabama 35809 

Commandant 
U. S. Army A i r  Defense School 
Attn: Missile Sciences Division, C&S Dept. 
P .O.  Box 9390 
For t  Bliss, Texas 79916 

Commanding Officer 
U. S. Army Ballistics Research Lab. 
Attn: V.W. Richards 
Aberdeen Proving Ground 
Aberdeen, Maryland 21005 

Commanding Offic er  
U. S. Army Materials Research Agency 
Watertown Arsenal 
Watertown, Massachusetts 02172 

Commanding General 
U. S. Army Strategic Communications 

Washington, D. C. 2031 5 

Commanding General 
U. S. Army Materiel Command 
Attn: AMCRD-RS-PE-E 
Washington, D. C. 20315 

Commanding Officer 
Foreign Service & Technology Center 
Arlington Hall 
Arlington , Virginia 

Research Plans Office 
U. S. Army Research Office 
3045 Columbia Pike 
Arlington, Virginia 22204 

Command 

Chief of Research and Development 
Headquarters, Department of the Army 
Attn: Physical Sciences Division P&E 
Washington, D. C. 20310 

Director 
Human Resources Research Office 
The G eor ge Washington Un ive rs it y 
300 N. Washington Street 
Alexandria, Virginia 223 14 

Commanding Officer 
U.  S. Army Electronics R&D Activity 
White Sands Missile Range 
New Mexico 88002 

Commanding Officer 
U. S. Army Engineers R&D Laboratory 
Attn: STINFO Branch 
For t  Belvoir, Virginia 22060 

Commanding Officer 
U. S. Army Electronics R&D Activity 
For t  Huachuca, Arizona 85163 

Mr. Alvin D. Bedrosian 
Room 26-131 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

Denartment of the Air Force 

Battelle Memorial Inst. 
Technical Library 
505 King Avenue 
Columbus, Ohio 43201 

Goddard Space Flight Center 
NASA 
Greenbelt, Maryland 20771 

Research and Tech. Div. (AFAPL) 
Attn: APIE-2, Mr. Robert F. Cooper 
Wright-Patterson AFB, Ohio 45433 

Technical Library 
White Sands Missile Range 
New Mexico 88002 

AFSC (Tech Library) 
Andrews AFB 
Washington, D. C.  20031 

AUL - 31'-9663 
Maxwell AFB 
Alabama 36 1 1  2 



. 

JOINT SERVICES DISTRIBUTION LIST (continued) 

DDR&E (Tech Library) 
Rm. 3C 128 
The Pentagon 
Washington, D. C. 20301 

Systems Engineering Group 
Deputy for Systems Eng’g. , SEPRR 
Directorate of Tech. Pubs. & Specs. 
Wright-Patterson AFB, Ohio 45433 

Eglin AFB 
Florida 32542 

APGC (PGBAP-1) 

RTD (Tech Library) 
Bolling AFB 
District of Columbia 20332 

BSD (Tech Library) 
Norton AFB 
California 92409 

ASD (Tech Library) 
Wright-Patterson AFB 
Ohio 45433 

Industrial College of the Armed Forces 
Attn: Library 
Washington, D. C. 

Southwest Research Institute 
Library 
8500 Culebra Road 
San Antonio, Texas 

Stanford Research Institute 
Library 
820 Mission St. 
South Pasadena, Zalir”. $1833 

Library 
National Science Foundation 
Washington 25. D. C. 

Linda Hall Library 
5109 Cherry St. 
Kansas City, Mo. 

Dr. H. Harrison 
NASA (Code RRE) 
Fourth and Independence Sts. 
Washington, D. C. 20546 

Mr. James  Tippett 
National Security Agency 
For t  Meade, Maryland 

Brig. Gen. J. T .  Stewart 
Director of Science & Technology 
Deputy Chief of Staff (R&D) 
USAF 
Washington 25, D.C. 

Dr. R. L.  Sproull, Director 
Advanced Research Projects Agency 
Washington 25, D.C. 

Lt. Col. EdwinM. Myers 
Headquarters U U F  (AFRDR) 
Washington 25, D. C. 

Dr. JohnM. Ide 
Div. Director for Eng’g. 
National Science Foundation 
Washington 25, D.C. 

Dr. Zohrab Kaprielian 
University of Southern California 
University Park 
Los Angeles 7, California 

Dr. Lowell M. Hollingsworth 
AFCRL 
L. G. Hanscom Field 
Bedford, Massachusetts 

Professor Nicholas George 
California Institute of Technology 
EE Department 
Pasadena, Caiifornia 

Hon. Alexander H. Flax 
Asst. Secretary of the A i r  Force 
Office of the Secretary of the A i r  Force 

Washington 25, D.C. 

Prof. Arwin Dougal 
University of iexcrs 
EE Department 
Austin, Texas 

(R&D) 

Mr. Roland Chase 
National Aeronautics & Space Admin. 
1512 H Street, N. W. 
Washington 25, D.C. 

AFAL (AVTE) 
Wright-Patterson AFB 
Ohio 45433 

Systems Engineering Group (RTD) 
Attn: SEPIR 
Wright-Patterson AFB 
Ohio 45433 



JOINT SERVICES DISTRIBUTION LIST (continued) 

AFAPL (APIE-2, Lt. Barthelmey) 
Wright -Patterson AFB, Ohio.45433 

Rome Air Dev. Center (RAWL, H. Webb) 
Gr i f f i s s  Air Force Base, New York 13442 

S. H. Sternick 
Aerospace Com - Attn: ESNC 
Waltham Federal Center 
424 Trapelo Road 
Waltham, Massachusetts 02154 

AFCRL (CRFE-Dr. Nicholas Yannoni) 
L. G .  Hanscom Fie ld  
Bedford, Massachusetts 

Mr. RoccoH. Urbano, Chief 
AFCRL, Appl Math. Branch 
Data Sciences Laboratory 
Laurence G .  Hanscom Field 
Bedford, Massachusetts 

AFCRL 
Office of Aerospace Res . ,  USAF 
Bedford, Mass. 
Attn: CRDA 

Dr. Louis C .  Block 
AFCRL (CROO) 
Laurence G. Hanscom Field 
Bedford, Massachusetts 01731 

Commander, AFCRL 
Attn: C . P .  Smith (CRBS) 
L. G. Hanscom Field 
Bedford, Massachusetts 

AFETR (Tech Library MU- 13 5) 
Patrick AFB, Florida 32925 

Mr. C. N. Hasert 
Scientific Advisory Board 
Hq. USAF 
Washington 25, D. C. 

Dr. Harvey E. Savely, SRL 
Air  Force Office of Sci. Res.  
Office Aerospace Research, USAF 
Washington 25, D. C.  

Department of the A i r  Force 
Headquarters, United States Air  Force 
Washington 25, D. C .  
Attn: AFTAC/TD- 1 

John C r e r a r  Library 
35 West 33rd St. 
Chicago, Ill. 

LOOAR (Library) 
A F  Unit Post Office 
Los Angeles, Calif. 90045 

Office of Research Analyses 
Library 
Holloman AFB, New Mexico 88330 

Office of Research Analyses 
Attn: Col. K. W. Gallup 
Holloman AFB, New Mexico 88330 

ARL (ARD/Col. R. E. Fontana) 
Wright -Patt e r s  on AFB 
Ohio 45433 

Brig. Gen. B. G. Holzman, USAF (Ret.) 
National Aeronautics and Space Admin. 
Code RS 
Washington, D. C. 20546 

AFRST (SC/EN) 
Lt. Col. L. Stone 
Room 4C 341 
The Pentagon 
Washington, D. C. 20301 

Commander 
Rome Air  Development Center 
AFSC 
Office of the Scientific Director 
Griffiss AFB, Rome, New York 

Commander 
Research & Technology Division (AFSC) 
Office of the Scientific Director 
Bolling AFB 25, D. C. 

Commander 
Air  Force  Systems Command 
Office of the Chief Scientist 
Andrews AFB, Maryland 

Commander 
Air  Force  Cambridge Research Lab. 
Office of the Scientific Director 
L. G. Hanscom Field 
B e df ord , Mass ac hus et t s 

Commander 
Aerospace Research Laboratories (OAR) 
Office of the Scientific Director 
Wright-Patterson AFB, Ohio 

Commander, Aerospace Systems Division 
AFSC 
Office of the Scientific Director 
Wright -Patterson AFB, Ohio 



I JOINT SERVICES DISTRIBUTION LIST (Continued) 

Commander 
Space Systems Division (AFSC) 
Office of the Scientific Director 
Inglew ood, California 

Dr. G. E. Knausenberger 
c/o Hq Co. Munich Post 
APO 09407, New York, N.Y.  

AVCO Research Lab, Library 
2385 Revere Beach Parkway 
Everett, Mass. 02149 

California Institute of Technology 
Aeronautics Library 
1201 East California St. 
Pasadena 4, Calif. 91102 

I Carnegie Institute of Technology 
Science & Engineering Hunt Library 
Schenley Pa rk  
Pittsburgh, Pa. 15213 

Rand Corporation 
1700 Main St. 
Santa Monica, Calif. 90401 

Aerospace Corp. (Tech Library) 
P .O.  Box 95085 
Los Angeles, Calif. 90045 

Lewis Research Center (XASA) 
Technical Library 
21000 Brookpark Road 
Cleveland, Ohio 

George C.  Marshall Space Flight Center 
(NASA) 
Redstone Arsenal, Ala. 35808 

High Speed Flight Lemer 
Technical Library 
Edwards AFB, Calif. 93523 

Ames Rsch. Center (NASA) 
Technical Library 
Moffett Field, Calif. 94035 

CIA OCR/LY/IAS 
IH 129 HQ 
Washington, D. C. 20505 

RADC (Tech Library) 
Gr i f f i s s  AFB, N. Y. 13442 

AEDC (Tech Library) 
Arnold AFS 
Tennessee 37389 

APGC (Tech Library) 
Eglin AFB 
Florida 32542 

AFWL (WLIL, Technical Library) 
Kirtland Air  Force  Base 
New Mexico 87117 

AFMDC (Tech Library) 
Holloman AFB 
New Mexico 88330 

AFFTC (Tech Library) 
Edwards AFB 
California 93523 

Space Systems Division 
Los Angeles Air  Force Station 
Air  Force  Unit Post Office 
Los Angeles, California 90045 
Attn: SSSD 

Churchill Research Range 
Library 
For t  Church ill 
Manitoba, Canada 

National Defense Library 
Headquarters 
Ottawa, Ontario, Canada 

Director 
National Aeronauticai Establishment 
Ottawa, Ontario, Canada 

EDS (ESTI) 
Laurence G. Hanscom Field 
Bedford, Massachusetts 01731 

Johns Hopkins University 
Andied Physics Lab.,  Library 
W-hite Oak, Silver Spring, L2siYkzd ???I? 

Los Alamos Scientific Lab 
Attn: Technical Library 
Los Alamos, New Mexico 87544 

ARL (AROL) 
Wright-Patterson AFB 
Ohio 45433 

Frank J. Seiler Rsch. Lab. 
Library 
USAF Academy, Colo. 80840 

U. S. Atomic Energy Commission 
Library 
Gaithersburg, Maryland 20760 



JOINT SERVICES DISTRIBUTION LIST (continued) 

AFAL 
AVR(L) 
Wright-Patterson AFB 
Ohio 45433 

Air  Force  Cambridge Res .  Lab. 
L. G .  Hanscom Field 
Bedford, Massachusetts 01731 
Attn: CRDM, Mr. Herskovitz 

Commander 
Air Force  Office of Scientific Research 
Washington 25, D. C. 
Attn: SREE 

Director 
Air University Library 
Maxwell A. F . Base, Alabama 

NA SA/AF SS/ 1 FOB 6 
Tech Library, Rm. 60084 
Washington, D. C. 20546 

USAFA (DLIB) 
U. S. Air Force Academy 
Colorado 

ARPA 
Tech Info Office 
The Pentagon 
Washington, D. C. 20301 

AFCRL(CRXL) 
L. G .  Hanscom Field 
Bedford, Mass. 01731 

U. S. Regional Sci. Office (LAOAR) 
U.S. Embassy 
APO 676, New York, N. Y .  

AEC 
Div. of Tech Info. Ext. 
P.O.  Box 62 
Oak Ridge, Tennessee 

Dr. Hermann H.  Kurzweg 
Director of Research - OART 
NASA 
Washington, D. C. 20546 

AFIT (MCLI) 
Tech Library 
Wright-Patterson AFB, Ohio 45433 

Prof. W. H. Radford 
Lincoln Laboratory, A- 183 
244 Wood Street 
Lexington, Massachusetts 

Department of the Navy 

Chief of Naval Operations 
Pentagon OP 07T 
Washington, D. C. 

Commanding Officer 
Office of Naval Research Branch Office 
Navy 100, Fleet P .O.  BOX 39 
New York, New York 

Library 
U.  S. Navy Electronics Lab. 
San Diego, California 921 52 

C ommande r 
U.  S. Naval Air Development Center 
Johnsville, Pennsylvania 
Attn: NADC Library 

Commanding Officer 
Office of Naval Research Branch Office 
495 Summer Street 
Boston, Massachusetts 021 10 

Commanding Officer 
U. S. Navy Underwater Sound Laboratory 
F t .  Trumbull, New London, Connecticut 

U. S. Navy Post Graduate School 
Monterey, California 
Attn: Electrical Engineering Department 

Commander, Naval Ordnance Laboratory 
White Oak, Maryland 
Attn: Technical Library 

Chief, Bureau of Ships, Attn: Code 680 
Department of the Navy 
Washington, D. C. 20360 

Chief, Bureau of Weapons 
Department of the Navy 
Washington, D. C. 20360 

Dr. Arnold Shostak, Code 427 
Head, Electronics Branch 
Physical Sciences Division 
Office of Naval Research 
Washington, D. C. 20360 

Chief of Naval Research, Code 427 
Department of the Navy 
Washington, D. C. 20360 

Director 
Naval Research Laboratory 
Washington, D. c. 20390 


